
Feature Detection using ORB detector followed by Brute-Force matching 
 
First we took an image of the classroom for the outlab part 
 
 

 
 
1.2 Image matching 
 

1. First we ran feature detect on the query images of barbara.bmp and gosh.bmp 
2. Then we performed a brute force comparison between the features extracted from the 

query images and all the images present in the repo_image dataset 
3. The brute force comparison resulted in matches which are correspondence objects 

between matching features of the query and test images 
4. Once the correspondence between features is established we take the average distance 

associated with all the match points for every pair of query - repo image 
5. This average cost leads to a metric, we divide the cost metric by the maximum amongst 

all the average costs to get a score between 0 and 1 
6. We declare a match between the query image and the repo image with the lowest score 

 
Experimentation 
 
ORB could not detect features in gosh.bmp image using the default parameters.  
The parameter edge_threshold was reduced to value 10 to make detection work with gosh  
 
 



Results  
 
Barbara Image in order query with features, best match with features and Matching 
 
  
 





 
 
 
For gosh in same order 
 
 





 



Lab04: Outlab Reflection Essay 
-Team DualDevils 
 
Outlab Part 01 - Comparison of SIFT and ORB, BF and FLANN 
 
This part was very similar to the inlab exercise, except for the fact that we had to also use the 
SIFT feature detector and compare it to the performance of the ORB detector. 
Further we also had to compare the performances of the Brute Force (BF) Matcher and the 
FLANN (Fast Library for Approximate Nearest Neighbors) based matcher. 
 
Input Data -  barbara.bmp, girl.bmp, wall.bmp 
 
Parameter Tweaking 
There was extensive parameter required for both the detectors 
 
Set of parameters used finally and their reasoning is described below: 
 
ORB:  
The controls provided by the API are as follows: 
Nfeatures​ - Max features detected (Increased to 5000 to look for more matches) 
The parameter specifies the maximum number of features that the detector will return. The 
number of features returned was saturating out even at 5000 for the ​wall.png ​image but 
increasing any further would likely compromise on the quality of matches due to spurious 
features. Hence the choice 
 
Below 3 parameters are image pyramid related and ​were left to their default values​ since 
there is no scale variation involved across the query and database images  
scaleFactor​ - For image pyramid 
Nlevels​ - number of pyramid levels 
firstLevel​ - The level of image pyramid at which input image sits 
 
edgeThreshold = 10​ - Minimum width of edges to be detected kept below default value of 31 
since doing this increases the sensitivity to thinner features as was seen in inlab with ​gosh.bmp 
images. Even with this set it was noticed that decreasing to 10 from default of 31 increases the 
richness of feature set.  
Below features were left default since matches were good without changing them 
patchSize - ​Size of patch used by Brief descriptor  
WTA_K​ = 2 - No. of points used by brief descriptor for each feature (Left Unchanged) 
scoreType​ - Harris be default (Kept Default since details of others are unknown to us) 
 
 
 



SIFT: 
Same Reason as ORB 
Nfeatures​ - Max features detected (Increased to 5000 to look for more matches) 
The parameter specifies the maximum number of features that the detector will return. The 
number of features returned was saturating out even at 5000 for the ​wall.png ​image but 
increasing any further would likely compromise on the quality of matches due to spurious 
features. Hence the choice 
 
contrastThreshold​ - The contrast threshold used to filter out weak features in semi-uniform 
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.  
→ This parameter was quite crucial in making the SIFT detector work on the low contrast 
barbara.bmp ​image. This is understandable since when contrast in image is low, the threshold 
has to be decreased to identify meaningful features 
Default value - 0.04 
Value Taken - 0.02  
 
edgeThreshold - ​Meaning Similar to ORB but in this case larger values make SIFT more 
sensitive thereby detecting mre features.  
Taken 10 and Default - 10 since this value was working well for all test cases 
 
Results from KP detection  
 
barbara.bmp - ORB 

 
 



Barbara.bmp - SIFT 

 
 
We see that ORB performs better in this case. Can comment that ORB performs well in low 
contrast situations even after tuning the contrast parameter for SIFT 
 
Girl.bmp ORB 
 

 
 
 
 



Girl.bmp SIFT 

 
 
We see that in the case of girl.bmp due to salt and pepper noise both detectors detect false 
features due to the presence of noise. 
However ORB seems to perform better in this case with useful features detected on face and 
bow tie compared to SIFT which has scattered features 
 
ORB Wall.png  

 
  
 
 
 
 



SIFT wall.png 

 
 
In this case SIFT has performed better in the sense that all the features obtained are well 
spread throughout the picture. Whereas in ORB they are concentrated in a very small part of the 
image.  
Choice of Matcher - Brute Force vs. FLANN 
As the name suggests the ​Brute Force​ KeyPoint matcher performs a brute force comparison 
between the feature descriptors for all possible pairs of points and returns the best possible 
match (We also enable the crossCheck option so that the match is consistent both ways) 
 
However the FLANN (Fast Library for Approximate Nearest Neighbors) based matcher performs 
fast Approximate Nearest Neighbour algorithms. 
Due to its efficient optimization procedures, FLANN is able to output matches much faster 
however these are only approximately correct. 
In all the 3 test cases above, for both SIFT and ORB, the maximum features are set to 5000. 
This has been done to avoid keeping weak features which could lead to some spurious matches 
or could even shadow out true matches. 
 
Because of this the feature space is not very large < 5000 pts and the Brute Force matcher can 
be used for inference within a reasonable time (< 20s on our machine for the worst case of 
wall.png and <5s for others) 
Further the FLANN matcher worked well alongside descriptors from both ORB and SIFT for the 
case of barbara.bmp and wall.png however for girl.bmp an incorrect image was retrieved from 
the dataset with FLANN. 
All 6 cases worked correctly with the Brute force matcher, hence -  
 
Matcher Choice for part 1 → Brute Force matcher cv2.BFMatcher( ) 



Feature Match results 
 
Barbara - ORB 
 

 
 
Normalized Score Chart 
0.316    barbara.bmp 
0.170    wall_un.png 
0.165    airplane_PSNR_0.bmp 
0.153    47_RML_20.bmp 
0.150    tree.bmp 
 

 
 
 
 
 



Barabara - SIFT 

 
 
Normalized Score Chart 
0.420    barbara.bmp 
0.203    37.jpeg 
0.195    26.jpeg 
0.194    mandrill.bmp 
0.194    29.jpeg 
 
Comparing the 2 it seems that even though SIFT started out with fewer features, it has done a 
good job of matching them with their correct correspondences in the original query image. 
 
Also the normalized score is a bit higher in SIFT case but it is correct to compare between the 
algorithms due to the differences in the feature descriptors used by them. 
 

 



Girl 
ORB 

 
 
0.090    girl.bmp 
0.055    zelda.bmp 
0.050    47_RML_20.bmp 
0.049    tree.bmp 
0.046    goldhill.bmp 
 

 
 
 



Girl - SIFT 
 

 
 
0.168    girl.bmp 
0.078    37.jpeg 
0.076    tiffany_ROT_30.bmp 
0.074    tiffany_ROTSCALE_1.bmp 
0.071    31.jpeg 
 
In this case ORB is clearly performing better. It would be fair to conclude that ORB is more 
robust against Salt and pepper noise compared to SIFT. 
 
Not only does ORB have more matches, there are also all correct (at least top ones printed) 
whereas with SIFT there are many false matches created. 

 
  



Wall - ORB 

 
 
0.311    wall_un.png 
0.203    barbara.bmp 
0.202    tree.bmp 
0.196    33.jpeg 
0.193    goldhill.bmp 
 
Wall - SIFT 

 
0.369    wall_un.png 
0.293    37.jpeg 
0.280    29.jpeg 
0.278    39.jpeg 
0.269    tree.bmp 
 
Overall ORB​ has provided more accurate correspondences in this case.In the 3 examples ORB 
performed better on wall.png and the noisy image while ​SIFT performed better​ on the image 
with low contrast.   



Wall - Retrieved images ORB followed by SIFT 
 

 
 

 
 
 
 
 



Outlab Part 02 - Attendance 
The exercise was completed and inputs and results are given below 
 

 
 
 
person_1.jpeg: Cropped out of above image with the aim of getting perfect feature point 
matching (For comparison purpose) 

 
Person_2.jpeg: Taken in Hostel corridor 

 



Feature selection in classroom 

 
 
Features with reference person_1  
 

 
 
Features for person_2 

 
 
 



Matches 

This image has many stray features but approx 1/4th are useful 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Bounding Box around person as below  
 

 



Outlab Part 03 - Mask Size Optimization (Find Out!) 
 
Assumption: Untampered/Un-occluded image of team mate to be ​added​ to burglar dataset - 
ishank.jpg 
Real Dataset (Left to Right, Top to Bottom maskOne.jpg (calibration), ishank.jpg 
(Untampered), maskTwo_try_1, maskTwo_try_2, maskTwo_try_3, maskTwo_try_4, 
maskTwo_try_5, maskTwo_try_6) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Finally none could be chosenas 
maskTwo 

 
 



 
Parameters varied for obtaining the results: (SIFT Detector) 
 
We used SIFT along with BF matcher in the above results. Following parameters were varied : 
 
nfeatures = 150 : ​Too many features lead to more variance in scores across test cases 
 
edgeThreshold = 25 : ​For higher values of edge threshold the threshold was overshot by both 
mask5 and mask6  and for lower values the retrieval threshold again increased and none of the 
images passed the threshold.  
 
contrastThreshold = 0.05 : ​This value is just a little bit higher than the default as it was 
observer that sight increase in the threshold made mask6 cross the retrieval threshold and 
lower values the retrieval threshold again increased and none of the images passed the 
threshold. 
 
sigma = 2 : ​Because of the noisy image given by web cam a higher sigma was necessary than 
the default. In this case higher values of sigma lead to threshold increasing and none of the 
images passed the threshold. And lower values significantly decreased the retrieval score of 
maskTwo image. 
 
Results for Best Match image (However Burglar never gets a higher score than mask 1) 
 
Mask One 

MaskTwo 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scores obtained for all 

the trials 



 
maskOne : 0.68 (Threshold) mask1 : 0.29 
maskOne : 0.68 mask2 : 0.27 
maskOne : 0.68 mask3 : 0.27  
maskOne : 0.68 mask4 : 0.31(Declared maskTwo for highest scoreamongst them) 
maskOne : 0.68 mask5 : 0.29 
maskOne : 0.68 mask6 : 0.23 
 
Since the data is real world, even with a large fraction of the face exposed we cannot beat the 
score of the original image matching with maskOne. 
 
This is because in all the new cases there are tiny mis-alignments and rotations that cause the 
match score to go down. 
 

  



 
So we repeated the exercise using synthetic masking data using a single input image and 
increasing area using matlab.  
abhiraj 

 
 We did this because from our experience with part 2 (attendance) it seemed like even slight 
changes in pose and lighting would make the problem hard to solve.  
So data with no such variations and synthetic masking would likely perform better (Incorrect 
result) 
 
Below are the images used for mask optimization task 
 

        
                     Mask1                                                      Mask2 



        
                   Mask3                                                        Mask4 

               
                    Mask5 Mask6 

                                     
                                                  MaskOne (Calibration Image) 
 
 



Obtained retrieval scores are as follows: 
 
maskOne : 0.36 (Caliberation) 
 
However with all the other maskTwo candidates, even though we got a score higher than 
maskOne on the dataset the corresponding matching image (highest score) was not the 
untampered abhiraj image but some other image got a higher score so it is not relevant to report 
those scores here 
 
For instance in the right side candidate for maskTwo we see that there are many false features 
created due to the presence of the circular shape and rectangular edges. 
These false features cause the maskTwo family to match up with some other image from the 
dataset. 
 
 
 

           
                          maskOne                                                                    maskTwo 
 
For reference (Area Occluded comparison): 
Area covered in maskOne = 8774 pixels 
Area covered in maskTwo_try_6 = (55471 - 15394) = 40077 pixels 
Area ratio = 4.57 
We see that for a ​huge difference​ if the area covered by the mask we get a similar retrieval 
score. 
 
Below are the detected features for maskOne and maskTwo 
 


