
Reflection Essay - Lab 12 Inlab - Clustering Images Using Metric learning 
 
The lab was based on ​feature extraction using Metric Learning​.  
Features were extracted using a Siamese Network which consisted of two embedding 
generation networks. 
If the embedding (compressed information about an input image) generated by the 2 networks 
in the siamese pair is f(x_o) and f(x_1), the network trains on the ​contrastive loss function 

 
 
We filled in all the missing details as required by the # FILL HERE and questions and  
get the plots below for the embedding results for the ​train, test and augmented test 
respectively  ​at the end. 
 
In all the plots the the x and y axis are both features/embeddings associated with various 
images which are all points on the scatter plots. 







 
 
  
 
 
 
  



Answers to the questions: 
 
1. The mean listed is the mean of the entire MNIST data (after normalizing pixel values in the 
range [0..1]. Update the mean and standard deviation to reflect that we are loading only the 
characters '4' and '9'. (Note you can leave this alone without getting stuck for this assignment). 
A : In the MNIST_SIAM class the self.data object was used to find the mean and variance of the 
dataset containing only 4 and 9 

self.mean = self.data.mean()/255  
self.std = self.data.std()/255  

 
2. Is the 233rd item in the train data a '4' or a '9'? (Note we are counting from 0) 
A: Simple print statement was added in MNIST_BASIC to get the 233rd item of train data. It was 
found out to be ‘4’​. 

print(self.class_labels[232]) 
 
3. What are the indices of the images for the 466th test pair-fed to the network? (Note we are 
counting from 0) 
A: Simple print statement was added in MNIST_SIAM to get the 466th pair in the test data. The 
indices of the pair were ​(930,1789,1) 

print(self.pairs[465][0]) 
print(self.pairs[465][1]) 
print(self.pairs[465][2]) 

 
4. With respect to the pairs of images fed to the network, what is your guess of the maximum 
value of a scalar that the network sees as the input? We are looking for a symbolic answer? 
A: All the images are fed to the network post normalization. Thus each pixel value is mapped to 
a number between (0,1) by first dividing by 255 followed by mean subtraction and division by 
the standard deviation. So the max value that is possible at the input is 

  1 )/σ( − μ  
5. How many '4's are present in the training dataset? 
A: ​train : 3000​ ​test : 900​ total: 3900 
 
6. What is the size of the output embedding? Why was this number chosen? 
A: output put embedding size = 2x1 
This size was chosen as it gives us large compression while keeping separation between 
classes 4 and 9 significant. 
Further, we can only visualize a size 2 feature/embedding space in a 2D plot.  
 
7. Write your conclusions on the 3 different plots given. Specifically, will you trust this 
embedding to differentiate the two characters in both the test datasets? 
Which particular type of character creates maximum confusion? 



A: We observe that the test and the train data (first and second images respectively) are well 
separated by our trained network, however under the augmented dataset which consists of 
images of the numbers 4 and 9 horizontally displaced by an amount lying in the set  
{-6, -3, +3, +6}, 
We see that the performance is not good, in particular, the letters 9 displaced by large amounts 
(+6/-6) perform quite poorly with numerous outliers lying outside the 2 main clusters in the lower 
left and the upper right corners. 
 
8. For your outlab, we want to you to (later on) update the notebook so that this confusion is 
reduced. Provide some idea on how this should be done in this 
Inlab. 
A: A NN perform well on the data similar to the data that it has seen before while training. So if 
we want to increase the accuracy on the augmented data set then we will have to train the 
model on the augmented data set as well. 
 



Reflection Essay - Lab 12 Outlab - Clustering Images Using Metric learning 
 
The lab was based on ​feature extraction using Metric Learning​. Metric learning is a learning 
paradigm through which we attempt to learn embeddings (encoded versions) of images (or 
other data) to establish similarity or dissimilarity between them. 
 
An approach to extract relevant features from metric learning and project our data into a 
lower-dimensional embedding space is to train a Siamese Network. 

 
 A siamese network consists of a pair of identical embedding generation networks. These 
networks share the same set of weights.  
Each embedding generation network typically consists of a sequence of Convolution (CNN) 
layers followed by a sequentially fully connected network terminating in a small (in our case 2) 
number of nodes. The number of nodes in the final layer tells us the dimensionality of the 
underlying embedding space. 
In our case, we have used the below architecture for an individual embedding network -  
CNN layers 
self.convnet = nn.Sequential(nn.Conv2d(1, 16, 5), nn.PReLU(), 
 nn.MaxPool2d(2, stride=2), 
 nn.Conv2d(16, 64, 3), nn.PReLU(), 
 nn.MaxPool2d(2, stride=2)) 
 
Fully connected linear layers 
self.fc = nn.Sequential(nn.Linear(64 * 5 * 5, 256), 
 nn.PReLU(), 
 nn.Linear(256, 64), 
 nn.PReLU(), 
 nn.Linear(64, 2) 
 ) 
 
Compared to the network provided to us as part of the starter code notebook for this lab 
exercise, we have slightly reduced the number of weights in the CNN layers of the network.  



The version provided to us in starter code-  
 
 self.convnet = nn.Sequential(nn.Conv2d(1, 32, 5), nn.PReLU(), 
 nn.MaxPool2d(2, stride=2), 
 nn.Conv2d(32, 64, 5), nn.PReLU(), 
 nn.MaxPool2d(2, stride=2)) 
 
The reason for doing this is discussed in ​question 1​. 
 
The loss function used to train a Siamese Network is crucial to achieving the goal of 
distinguishing between similar and dissimilar MNIST characters. 
If the embeddings (compressed information about an input image) corresponding to the first and 
second image are f(x_o) and f(x_1), the network trains on the below ​contrastive loss function 

 
 
When the label y = 1, we assume that the input pair is semantically similar and we incentivize 
f(x_o) being close to f(x_1). 
Whereas when y = 0, the input pair is dissimilar and we wish to make the distance between the 
embeddings of the inputs as at least - m (The margin hyperparameter, typically set to 1.0)  
 
If trained correctly, the network is able to separate MNIST characters from different classes into 
distinct clusters in the embedding space. 
An example of this is shown below, here we distinguish between MNIST 4 and 9. 

 
 
 



Goal of outlab exercise- 
As part of the inlab exercise, we successfully distinguished between 4s and 9s by clustering 
them into dense, well-separated clusters. However, we were also interested in the performance 
of our classifier on an augmented dataset consisting of horizontally translated versions of 
MNIST characters.  
On this augmented test set, though the network is able to associate augmented characters with 
their correct classes in most cases, we are unable to make “intra-class” distinctions between the 
characters. That is we are unsure as to what the origin class (Whether + or - 6 augmentation) of 
a certain datapoint was. 
The aim of the outlab exercise thus is to move from a representation like this -  

 
 
 
 
 
 
 
 
 
 
 



To a representation like this- 

 
 
To achieve this goal, a possible method is to train only with the top 5 nearest neighbors of a 
certain MNIST character (4 or 9) within its respective class as the ​positive pairs​.  
The above suggestion leaves open to interpretation the way of choosing the ​negative pairs. ​To 
explore the effect of different choices, we tried 2 training regimes differing in the way they 
choose negative pairs. 
1. Negative pairs shown to the network were (4, any random 9 from dataset) and (9, any 
random 4 from dataset) (This is identical to the inlab). The results for this looked as follows - 
  
 
 
 
 
 
 
 
 
 
 
 



Output on the training set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Output on the test set 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Output on the augmented set 
 

 
 
2. Negative pairs shown to the network were (4, any random 9 from dataset), (4, any random 
non NN 4 from dataset), (9, any random 4 from dataset), (9, any random non NN 9 from 
dataset). Note that this means some (4, 4) and some (9,9) pairs would be taken as negative by 
the network. The results for this looked as follows - 
 
 
 
 
 
 
 
 
  



Results on training data-set 

 
 
 
 
 
 
 
 
 
  



Results on test data-set 
 
 

  



Results on augmented dataset 
 

 
 
Both regimes seem to have their pros and cons.  
Under regime 1 - we present negative pairs as only the ones differentiating between MNIST 4 
and 9 s. This causes the network to learn a more dense clustering. However, this reduces the 
spread of the data for all three cases which might be seen as a ​negative from the point of 
view of intra-class differences. 
Under regime 2 - the negative pairs also consist of (4, 4) and (9, 9) pairs (most of the time the 
pairs cannot be a NN, but can with a very small probability). Since the network learns to even 
put two 4 characters (or 9) in different classes (unless they are NN), the overall spread we get is 
higher, however this virtue backfires somewhat when trying to visualize the augmented dataset 
since the high spread ​emphasizes intra-class ​differences but diminishes ​inter-class 
differences. 



Question 1: ​Why does the new nearest neighbor training regime achieve this type of 
clustering? 
 
In the inlab exercise, while training our network, we taught it to learn similarities between any 
pair of 4s or any pair of 9s. This leads to the network recognising some high level features 
common to all characters of a particular type.  
The network gains a high level understanding of what a 4 looks like and is able to embed this 
knowledge into a 2 dimensional space. This leads to a dense clustering within the family of 4s 
and 9s - i.e great inter-class separation. 
When a pair of 4s (or 9s) are close to each other some sort of distance metric (cosine similarity 
in our case) they are likely to be similar in many respects like size, details of curvature and 
shape etc. This means that the network will not be unable to get a good understanding of what a 
generic 4​ should look like and it would end up giving us a larger spread.  
In a way we are ​sabotaging the feature clustering performance​ of our network to get a 
greater spread. This is also the reason that we ​decrease the representative capacity of the 
CNN​ layers of our SIAMESE network. Fewer weights make it harder for the network to 
recognise features which further leads to a greater spread in the embedding space. 
This achieves the aim of ​improving intra-class separation at the cost of inter-class 
separation​. Since differences within a class would be invisible under a dense clustering. But 
under a poorer quality spread out clustering such differences would be visible.  
 
Question 2: ​Compared to what has been provided, what would be an even better solution? 
Sketch it. How would you change the training regime if you want this even better result? 
 
As mentioned above, using the nearest neighbor for training the intraclass difference is 
enhanced at the cost of the interclass differences which leads to us having distribution for the 
augmented data as provided.  
A better solution would have been if we would have got four separate clusters corresponding to 
each of the augmented data types (4-6,4+6,9-6,9+6). That is we wish to maintain both a good 
inter-class ​and a good ​intraclass ​separation. 
To better achieve this goal, we consider two modified loss functions 
 

1. Based on Triplet loss​: Under triplet loss, we calculate the loss arising from a collection 
of three images - an Anchor image x_a, an image of the same class as the anchor image 
x_p (positive) and an image from the other class x_n (negative).  
The triplet loss function makes sure that x_a is closer to x_p as compared to x_n by a 
certain margin - m. Overall this regime leads to slightly better inter-class separation on 
unseen data as we had seen in the earlier Metric Learning lab.  
In particular, in our setting, x_a would be the current datapoint being accessed, x_p 
would be a random NN of x_a and x_n would be a random element of the other class 9. 
 
 



2. Based on correcting for the wrong negative pairs: ​In this, we design a new loss 
function such that we get different loss values for different types of pairs that we have i.e. 
a true positive​ pair, (4 or 9 with its NN), ​false negative​ pair (4/9 with another 4/9 but 
not its NN) and the ​negative pair​ (4/9, random 9/4).  
The loss function then will be defined in such a way that it penalizes the classification of 
positive as negative the most and the penalty decreases for the positive as false 
negative classification. This type of loss function will lead to pushing away the positive 
and negative pairs more relative to the positive and false negative pairs thus giving us 
better inter-class and intraclass separation. 

 
 
 


