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1 Introduction

Reinforcement Learning (RL) is a very promising framework for designing intelligent-agents that
perform desired tasks while interacting with potentially complex environments. This is partly due
to the fact that its objective of maximizing returns by taking desirable actions closely mimics the
process of animal learning. Recently, RL has seen numerous success stories in the field of game
playing. Examples include Atari games, Go and video games like DOTA. However, the adoption of
RL outside of simulated environments is not yet widespread.

A part of the problem with adopting RL can be attributed to the requirement that an agent start
exploring its environment from scratch every time its designer wishes for it to perform a new task.
Starting tabula-rasa, and learning new behavior through pure exploration requires large sequences of
sample points. This requirement imposed on artificial agents is far from our everyday experience.
In the case of humans, our prior learning guides our learning of new related tasks. While learning
a task, our exploration is biased by our skill set acquired up to that point. For instance consider a
person learning to ride a bicycle. Initially it takes them a long time to internalize knowledge about
maintaining balance and controlling the handle-bar. However, when the same person later learns to
ride a motorcycle, it takes them very little exploration in learning to ride it. The aim of this project is
to take a step towards achieving this goal for artificial agents.

2 Related Work

There has been extensive work towards making agents learn desired behaviours within a reasonable
sample horizon. Some early work includes the paradigm of reward-shaping (Ng et al.[(1999)). Under
this scheme, expert knowledge about the problem is incorporated into a shaping reward function
which is added on top of the sparse rewards from the agent’s environment. The additional shaping
rewards encourage the agent to learn desirable behaviours faster. The problem with this technique
is the difficulty of incorporating prior knowledge into the form of an effective shaping function.
Another approach that works by the designer controlling the reward function is reward-search (Singh
et al.|(2009)). This is a meta-learning method which performs a brute-force search on the space of
possible rewards to learn a reward scheme under which an agent can learn the desired behaviour the
quickest. Although great in principle, this approach is infeasible outside of small tabular domains
due to a search space exponential in the number of state action pairs (s, a). Further there is no direct
way of incorporating expert knowledge into the reward-search framework.

Some other strategies for efficient exploration learn distributions of latent variables during the
deployed agents lifetime. Examples of these methods include [Hausman et al.| (2018) and |Gupta et al.
(2018)). The learnt generative models are then used to bias future exploration undertaken by the agent.
Empirically these techniques have been shown to be quite effective, however their successes are
domain specific and they don’t provide any universal guarantees for improved performance.
Although the motivation for this work is aligned with that of the aforementioned works, the view
taken for the problem is more closely aligned with the idea of transfer learning. As per Torrey &
Shavlik (2009) “Transfer learning is the improvement of learning in a new task through the transfer
of knowledge from a related task that has already been learned." In particular, through this work, we
wish to reduce required exploration to achieve good performance by injecting expert knowledge.



Probably Approximately Correct (PAC) - RL

In this work, the structure of the expert knowledge to be incorporated into exploration is taken to be a
good policy 7€ such that ||[V*(s) — V7" (5)||oo < Are. Where V* and V™" are the value functions
for the optimal policy and 7¢ respectively and A . is a constant. Keeping this in mind a natural
choice for a strategy to build upon would be the PAC-RL framework.
An agent’s learning algorithm qualifies as PAC-RL if for any Markov Decision Process (MDP)
{S, A, T, R,~}, on halting the algorithm outputs a policy 7 such that

P(|[V* = V™| <€) >1-46

To qualify as PAC-RL, the algorithm must also do this efficiently - In time steps polynomial in
|S],14],1/€,1/8,1/(1 — ) and Rypq. (the largest reward).

Over the years, a few efficient PAC-RL strategies have been proposed. Explicit Explore or Exploit -
E? (Kearns & Singh| (1998))) is one of the early strategies that popularised PAC-RL. E? computes
explore/exploit policies valid for a fixed number of steps during exploration. The algorithm is
somewhat complicated with numerous rules and sub-routines. In contrast R-MAX (Brafman &
Tennenholtz (2002))) is a simpler strategy that computes a parameter ¢ based on the requirements € and
d. Then for each state-action pair (s, a) explored fewer than c times, it sets Q(s, @) = Rpaz/(1 — 7).
Action elimination (Even-Dar et al.| (2003))) borrows ideas from the optimal arm selection problem
in multi armed bandits. Particularly it builds upon the successive arm elimination algorithm. Most
recently, Model Based Interval Estimation-MBIE (Strehl & Littman| (2005))) was proposed as a viable
candidate for the PAC-RL problem. It works by maintaining confidence intervals on the probability
distributions associated with each state-action pair. Further, it provides an exploration bonus to
insufficiently explored states. Both of these being ideas that mirror the UCB (Upper Confidence
Bound) arm selection algorithm for multi armed bandits.

3 Problem Specification

As mentioned earlier, through this work, we aim to incorporate expert knowledge to perform more
informed exploration. It is assumed that this knowledge is available in the form of a A -optimal
policy 7¢(s). Precisely, for exploration on a given MDP M = {S, A, T, R,~} we wish to design a
PAC-RL algorithm .4 with guarantees e, d such that

TA{S, A, T,R,7,¢,6,7°}) < TPACTRE({S, A, T, R, v,€,6})

For certain good policies 7°. Here T4 and T4~ 1L are the time horizons required to provide the
PAC ¢, § guarantees for the algorithms A and the base PAC-RL algorithm (on top of which A is built)
respectively.

4 Proposed Approach and Plan

To achieve the stated goal, the proposed approach is to first try and develop an enhanced exploration
strategy for the PAC - multi armed bandit problem (PAC-MAB). This is motivated by the course of
work taken by [Even-Dar et al.| (2002) which was followed by the action-elimination algorithm for
MDPs [Even-Dar et al.| (2003)). In particular Even-Dar et al|(2002)) provides a black-box strategy for
converting a PAC-MAB algorithm to a PAC-RL algorithm. In case this does not work out an alternate
strategy is to try and inject the optimal policy 7* into a PAC-RL exploration strategy. The decision
on which of the available algorithms to choose will be taken at a later stage.

The procedure for developing expert knowledge injected strategies would be to try and intelligently
guess ideas that may work and test their effectiveness via simulations.



Time Target Tasks
2 weeks (Midterm) Thorough Literature review
Either a strategy for PAC-MABs or
Informed decision on PAC framework to build upon
8 weeks Initial results using optimal
policy 7* as expert knowledge or
results from MAB to RL
12 weeks (Final) Extension of results to
A-optimal (good) policies
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