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Abstract—We consider a system composed of a sensor node
tracking a time varying quantity. In every discretized time slot,
the node attempts to send an update to a central monitoring
station through one of KX communication channels. We consider
the setting where channel realizations are correlated across
channels. This is motivated by mmWave based 5G systems where
line-of-sight which is critical for successful communication is
common across all frequency channels while the effect of other
factors like humidity is frequency dependent.

The metric of interest is the Age-of-Information (Aol) which is
a measure of the freshness of the data available at the monitoring
station. In the setting where channel statistics are unknown
but stationary across time and correlated across channels, the
algorithmic challenge is to determine which channel to use in each
time-slot for communication. We model the problem as a Multi-
Armed bandit (MAB) with channels as arms. We characterize the
fundamental limits on the performance of any policy. In addition,
via analysis and simulations, we characterize the performance of
variants of the UCB and Thompson Sampling policies that exploit
correlation.

I. INTRODUCTION

Future communication technologies including 5G are likely
to use the millimeter band (30GHz to 300GHz) for com-
munication. The available bandwidth is partitioned into fre-
quency channels for communication. Factors such as frequency
dependent atmospheric attenuation affect propagation in the
millimeter band. In addition, the availability of a line-of-sight
path between the source and receiver is critical for successful
communication in this band [1]. Since the existence of a line-
of-sight path is frequency agnostic, channel realizations across
different frequency channels at a given time are correlated.

Age of Information (Aol), introduced in [2], is a freshness
of data metric that measures the time elapsed since the most
recent successful update sent from a source was received at
the intended destination. For time-critical applications like
self-driving cars, smart homes and other up and coming IoT
applications, it is imperative that the data used by the control
unit to make decisions is as recent as possible. In these cases,
Aol is a suitable performance metric.

The system we study builds on the setting studied in [3]
and consists of a single source node tracking a time-varying
quantity. The source attempts communicating an update to a
central monitoring station. At every discretized time step {,
an update is sent through one among K available channels.
Each channel has a certain probability of success which is
assumed to remain static across the period of operation. The
channel statistics, that is the probability of success or failure
of communication for a certain channel, are not known to the
scheduler. However, it is known that the successes and the
failures across the K channels are correlated with one another
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Fig. 1: The source node is attempting to communicate with
the monitoring station. Depending on the state in which X
finds itself, only certain channels work.

through an underlying stochastic state X. Depending on the
state in which X finds itself, certain channels are successful
whereas others are not (Figure 1). Thereby the model accounts
for correlation between the performances of channels.

The algorithmic challenge is to determine which channel
to use for communication in each time step in order to
minimize cumulative Aol over a finite horizon 7. The dif-
ference between expected cumulative Aol under the chosen
scheduling policy, and under an oracle’s optimal strategy of
choosing the best channel k* at all time steps, is called Aol
Regret. We model the correlation between the performance of
channels using the Correlated Multi-Armed Bandit framework
introduced by [4]. For the Aol metric, scheduling decisions
taken at any time step have a downstream effect across all
future time slots. Hence, a new analysis for the Aol regret
metric is needed to tackle problem instances drawn from the
Correlated Bandit framework.

A. Our Contributions

Lower bound on Aol regret: We show a lower bound of
Q(logT) on Aol regret for instances that have at least one
strictly competitive arm (formally defined in Section II).

Performance of variants of UCB and Thompson Sampling:
We show that the Aol regret for Correlated-UCB (CUCB)
and Correlated-Thompson Sampling (CTS) (proposed in [4])
is O(C'logT) 4 O(1). Here C' is the number of sub-optimal
competitive arms (formally defined in Section II).

Empirical validation: Through simulations, we compare the
performance of UCB, Thompson Sampling, CUCB, CTS, and
their Aol-Aware variants proposed in [3].

B. Related Work

Multi-Armed Bandits (MABs) are a sequential decision
making framework where at every time step ¢, a choice has
to be made between K possible bandit arms with unknown
statistics. UCB [5] and Thompson Sampling [6] are two widely
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Fig. 2: Bandit instance I}

studied algorithms for the MAB problem. In this work, we
study variants of these policies more suited for our setting.

Recently, variants of the traditional MAB framework that
are capable of incorporating additional structure into the
decision making problem have been introduced. In addition to
observing rewards, the contexual bandit framework [7], learns
a mapping between a context vector 6 and the best arm k*.
Another example is the structured bandit framework [8], in
which the mean rewards for all arms as a function of the
context f are known but 6 itself is hidden. The Correlated
Multi-Armed Bandit framework of [4] is a variant of the MAB
problem that presents the scheduler with arms whose rewards
are not independent of each another. That is, sampling arm
k can reveal information about the rewards we can expect
from another arm /. In addition to observing the rewards
obtained from sampling an arm k, scheduling algorithms
cognizant of correlation can track additional side information
to identify some arms as sub-optimal without sampling them
often, thereby reducing the accumulation of regret.

Aol or Age-of-Information is measure of the freshness of
data available at the central monitoring station. Aol has been
the focus of a variety of work, and [9] can be referred to
for a comprehensive survey. Previously, a large focus of the
work on Aol has been on problems where channel statistics
are known [10]-[13]. In our work, we take channel statistics to
be unknown and apply Multi-Armed Bandits to the scheduling
problem, which is the approach taken by [3] for minimizing
Aol regret. Building upon the work of [3], we drop the
assumption of independence between channels and instead
take that they follow the Correlated Multi-Armed Bandit
model.

II. SETTING
A. Correlated Bandit Model

For a system with K communication channels we construct
a Correlated Bandit instance with the same number of arms.
The random variable X captures the underlying state that
determines the rewards for the correlated arms. The reward
obtained on playing arm k is denoted by a Bernoulli random
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Fig. 3: Bandit instance I
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variable Y;(X), where Y}, is a known deterministic function.
We define ur, = Ex[Y%(X)]. The optimal arm is denoted by
k*, and has mean p*. The difference between the largest mean
and the mean of a sub-optimal arm is called the sub-optimality
gap and is given by Ax = p* — pg.

Since the distribution of X is unknown, the means
W1, o, ..., g are also not known. MAB algorithms such as
UCB empirically estimate the means fi; for use in decision
making. Under the Correlated Bandit model, rewards for all
the arms are functions of the same random variable X . Hence,
we can infer the possible rewards that an arm ¢ could have
returned if we had chosen arm ¢ instead of arm k. To exploit
this, [4] introduces the notion of pseudo rewards.

Definition 1 (Expected pseudo reward and pseudo gap).
Pseudo reward for arm £ with respect to arm k is given by,

sup  Yy(x). (1)
z:Yy (x)=r

Sex(r) =

Expected pseudo reward in turn is defined as,
bok = Ex[sen(Ye(X))]. (2)
The pseudo gap is defined as Az’k* = [ — do

We say arm k is competitive if Aé,k* < 0 and strictly
competitive if the inequality is strict. If AM* > 0, we call
arm k non-competitive. We use C' to denote the number of
competitive arms excluding arm k*.

Example 1. Two examples of Correlated Bandit instances
Iy and 1y are shown in Figures 2 and 3 respectively. Both
instances have K = 4 arms and have X as a discrete
random variable taking values in the abstract alphabet
{x1,29,23,24}. In the figures, the length of the interval
corresponding to x; is equal to P{X = x;}. Consider 1y, in i,
the mean reward for the bandit arms is given by, 1 = 1x0.2,
pe = 1 x03+1x03 pg =1x034+1x0.2 and
e = 1 x 0.3. Hence arm 2 is optimal with p* = 0.6. The
expected pseudo rewards can be computed using Definition 1
to obtain ¢1 5 = 0.4, ¢32 = 1.0 and ¢4 2 = 0.4. Hence, for
instance 1y arm 2 is optimal and arm 3 is the only competitive



sub-optimal arm. Therefore C' = 1 for instance 1,. Performing
a similar analysis on 1o, we find that arm 4 is optimal and no
other arm is competitive. In other words C = 0 for 1.

B. The Aol Regret Metric

Here, the notions of Age-of-Information (Aol) and Aol
regret, that were earlier described informally, are made precise.

Definition 2 (Age-of-Information (Aol)). At the start of time
slot t, let a(t) denote the Aol at the central monitoring station
and let u(t) denote the time index at which the recent most
successful update was received by the monitoring station.
Then, a(t) =t — u(t). Alternatively,

1
alt) = {a(t -1)+1

Under a given scheduling policy p, let a,(t) denote the Aol
in time slot ¢. Further, let a*(¢) be the Aol under an oracle’s
policy that uses the optimal arm £* in all time slots. The Aol
regret at time 1" is the cumulative difference in expected Aol
for the two policies from time-slots 1 to 7.

if the update in t — 1 succeeds
otherwise.

Definition 3 (Age-of-Information Regret (Aol Regret)). Aol
regret for a policy p, over T slots is given by,

T
= ZE[aP(t) ZE% et 3)
t=1

where (3) follows from the expectation of a geometric random
variable with parameter 1*.

III. MAIN RESULTS AND DISCUSSION

In this section we present our main contributions and their
implications. First, we provide a lower bound on Aol regret for
a certain class of policies, then we examine an upper bound on
Aol regret for two policies, namely CUCB and CTS (proposed
in [4]). Lastly, we derive the conditions under which the upper
and lower bounds on Aol regret are order-wise equal.

A. Lower Bound for Correlated Bandit Instances

First, we define the class of a-consistent policies and then in
Theorem 1 provide a lower bound on the Aol regret achievable
by any policy p belonging to this class.

Definition 4 (a-consistent policies [5]). Let ks denote the
index of the channel scheduled in time-slot s. The index k*
denotes the index of the optimal channel. A scheduling policy
is called a-consistent, for a constant o € (0, 1), if there exists
an instance dependent constant M such that,

t
E[ >0k, = kY] < Mt*, VE £ k" )
s=1

Theorem 1 (Lower bound on Aol regret). If a bandit instance
I has at least one competitive arm k with Ay, - < 0, then for
any a-consistent policy p, we have,

Ay 1—a)logT —
R,(T) > max k. (Izajlog

log (4M)
kec’ D(Py, P[) T '

Otherwise, if Ay j- > 0V k € [K], R,(T) > 0.

Here D(Py, P/) is the KL divergence between the reward
distribution of arm % and a suitably chosen perturbed reward
distribution. The set C’ is the set of strictly competitive arms
and M is an instance dependent constant as in Definition 4.

B. Upper Bound for Correlated Bandit Instances

We now characterize upper bounds on Aol regret for the
policies CUCB and CTS proposed in [4]. The key idea behind
these policies is to exploit the correlation in the rewards of
various arms to obtain a set of competitive arms in each step.
The algorithms then play an arm from this set. For the sake
of completeness, we provide details of these policies in the
appendix (Algorithms 1 and 2 respectively).

Theorem 2 (Upper bound on Aol regret under CUCB). For
a Correlated Bandit instance, let the number of competitive
sub-optimal arms be equal to C. Further, let C denote the
set of competitive arms inclusive of the optimal arm k*. Let
fhmin = Ming U,

~ 2K'1
tO = lnf {T 2 2 : AmirhAkJe* Z 4\/W},
T
U(nc)

o) = Kto+ K3 Z ( ) 2375 3

t=Ktg
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Then, for T > tg,

1—pu 1 1
(- )
M*Nmin Hmin ,LL*

Z A /UIETLQCS(B Z AkUli?UcB)
K €[K]\C keC\{k*}
=0(1)+0(ClogT),

and for T < tg, E[Rcucs(T)] < (#nlﬂn — %)T
Theorem 3 (Upper bound on Aol regret under CTS). For
a Correlated Bandit instance, let the number of competitive
sub-optimal arms be equal to C and let C denote the set of
competitive arms inclusive of the optimal arm k*. Further, let
fmin = Ming g,

tb = inf {T Z exp (11ﬂ) : AmimAk,k* 2 6 M},
\/ T
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Then, for any choice of 5 > 1 and for T > ty,
1—u* 1 1
E[Rers(T)] < -+ (—— = —)x
M fmin Hmin H
(nc
( Z Ak’ Ulc,CT)s + Z

K e[K\C keC\{k~
=0(1)+0(ClogT),

(c)
AkUk,ms)
}

and for T < ty, E[Rcrs(T)] < ( Lo L)T'

Hmin I
C. Discussion of Implications

From Theorems 2 and 3 it is clear that both CUCB and CTS
are a-consistent and therefore Aol regret under these policies
will satisfy Theorem 1. Since, the bounds on Aol regret depend
on the number of sub-optimal competitive arms C, we consider
different possibilities for C' to understand the regret bounds.
If C > 0 for a Correlated Bandit instance, and if at least one
arm is strictly competitive, then the lower bound and upper
bound on Aol regret are both O(log T'). However, when there
are no competitive arms, that is when C' = 0, then there is
no meaningful lower bound on the expected Aol regret. The
C = 0 case agrees with the fact that the set C\{k*} being
empty results in a constant O(1) upper bound on Aol regret.
Hence for both these cases of Correlated Bandit instances, the
bounds are order-optimal.

The Correlated Bandit model used in this work assumes
the knowledge of deterministic reward functions. In practice,
it may be challenging to determine these functions, and while
conducting such an exercise we may even be able to learn
the distribution of the underlying state X itself, thereby doing
away with the need for any Bandit algorithm. However, the
strength of this model is that once these functions are deter-
mined, they can be utilized in other communication systems
with a similar configuration but a different and unknown
distribution of X . Occlusions of different nature can repeatedly
disrupt multiple channels at the same time engendering corre-
lation in their performances. Communication systems similar
to the one considered in this work might be placed in very
different environments while following a standardized configu-
ration. Due to differences in the environment, occlusion events
analogous to the abstract entries in {x1,z2,...,2,} used in
this work, would occur with different relative frequencies at
every installation. This variety in environments would make it
difficult to scale solutions customized for every location. The
distribution agnostic model and algorithms considered in this
work would be highly beneficial in such scenarios.

IV. SIMULATIONS

In this section, we compare the performance of UCB, TS,
CUCB, and CTS via simulations. In addition, we also compare
the performance of Aol-aware variants of these policies [3].

Whenever current Aol a(t) is low, the Aol-aware variant
of a policy makes decisions identical to its parent algorithm.
However, when a(t) exceeds a certain threshold specified in
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Fig. 4: Aol regret results for bandit instance I-1
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Fig. 5: Aol regret results for bandit instance -2

[3], the Aol-aware variant selects the arm k with the highest
empirical mean fij.

We plot Aol regret for the bandit instances I; and Io,
described in Section II in Figures 4 and 5 respectively. It can
be observed that for both I; and Iy, CTS and its Aol-aware
variant perform the best on Aol regret. Further, CUCB and
CTS have significantly lower Aol regret as compared to UCB
and TS respectively. This is because of the fact that CUCB
and CTS exploit correlation between arms to avoid sampling
some non-competitive sub-optimal arms numerous times. Even



though TS does not utilize correlation, its performance is still
better than CUCB for I;. This is because, even though both
UCB and TS have log T Aol regret scaling, the pre-factor for
log T" in UCB, and consequently in CUCB, is much larger than
the prefactor in TS.

As seen in Section II instance Iy had no competitive sub-
optimal arms. Hence, as predicted by the bounds in Theorems
2 and 3, both CUCB and CTS have constant expected Aol
regret regardless of the horizon. Interestingly, through Figure
5, we also observe that the Aol-aware variant of a policy need
not perform better than its parent policy as is the case for
CUCB, CTS and TS. The regret bounds stated in Theorem 3
were for Thompson Sampling with Gaussian priors, however,
the simulation results for TS and CTS in this section were with
Beta priors since the latter performs better on Aol regret.

V. PROOFS
A. Proof of Theorem 1

Lemma 1 (Lower bound on Aol regret for any policy). Let
n(t) be the number of times arm k was scheduled in the time
slots 1 to t — 1. Then, Aol regret R,(T') under any policy p
is lower bounded as,

1
Ry(T) > — > AEn(T + 1)),
ik
where A; = p* — ;.
Proof. Let S,(t) and S*(¢) be indicator random variables
denoting a successful update in time slot ¢ by policy p and

the oracle’s policy respectively. Then, from Lemma 1 of [3]
we have,

T
1
Ry(T) 2 D E[S*(t) = Sp(t)]- (5)
t=1
Further, from [3], we also have,
E[S*(t) = S,(t)] = > (u" — m)P(U{k; =i} = 1) (6)
i#k*
=3 APA{k =i} =1). (7)
i£k*
Therefore from inequality (5) we have,

R(T) > LS S APk =i} =1 ®

- i#k*
1
=— 3 AE[R(T +1)). 9)
[
[

Lemma 2 (Bretagnolle-Huber Inequality [14]). Consider two
probability measures P and @), both absolutely continuous
with respect to a given measure. Then for any event A,

P(A) + QUA) > J exp (~ KL(PI|Q)).

Lemma 3 (Divergence Decomposition Lemma [15]). Let
v = (Py,...,Px) be the reward distributions associated

with one K-armed bandit, and let v/ = (P,. .., Pj;) be the
reward distributions associated with another K-armed bandit.
Let P, = P, and P}, = P!, be the joint distributions
corresponding to the schedule of bandit arms chosen under
policy p and the rewards received. Then,

K
KL(P}||P},) = D(P},P},) = > E,[ni(t + DID(P;, P),
i=1

where B, [n;(t + 1)] is the expected number of pulls of arm i
in t rounds of play for the bandit instance described by v.

Proof of Theorem 1. Consider a Correlated Bandit instance I
having just two arms, the optimal arm with index 1 and a
lone sub-optimal arm with index 2. If the sub-optimal arm is
strictly competitive, that is if Ag’l < 0, then from Theorem
3 in [4] we can construct a perturbed bandit instance I’ such
that E X/[Y/Q(X )] > 1. Let P! and P!, be the distributions
corresponding to rewards and scheduled arms in the first ¢
time steps for instances I and I’ respectively. By construction,
arm 2 will be the optimal arm for the bandit instance . Now,
using Definition 4, for a-consistent policies p, there exists a
constant M such that,

E! [in{m - 2}} < Mt® (10)
T=1

£, [in{m - 1}} < Mt~ (11)
T=1

Defining the event A = {na(t + 1) > t/2} and using
inequalities (10) and (11), the following Markov inequalities
hold,

PI(A) < 20 (12)
P (A°) < fﬂ{ (13)
Now, using Lemma 2 we can write,
D(P{,PL) > (1 — a)logt — log (4M). (14)
Next, using Lemma 3 we can expand D(P{, P},) as,
D(P1, P) = Ei[na(t + 1)|D(Py, Py). (15)

Combining inequality (15) and Lemma 1, we get the following
lower bound on Aol regret for instance I,

Ay ((1 —a)logT — log (4M)>
)= WP, )
If a Correlated Bandit instance has more than one strictly
competitive sub-optimal arm, then the expected number of sub-
optimal pulls, and by extension, the lower bound on Aol regret,
can only be higher due to the greater exploration required.
Hence, in general, if the collection of strictly competitive arms
is given by C’, then,

(16)

Ar  (1—a)logT —log (4M)
R,(T) > .17
o) 2088 D Py, B w an
If among the sub-optimal arms, there is no strictly competitive
arm, then the lower bound on Aol Regret is simply 0. ]



B. Proof of Theorems 2 and 3

As in ordinary MAB instances, the reward Yj (X)) of each
arm k in Correlated Bandit instances is distributed accord-
ing to the Bernoulli distribution. Hence, under the technical
Assumption 1 of [3] the following Lemma would apply to
Correlated Bandit instances.

Lemma 4 (Lemma 4 in [3]). Given the expected number of
pulls of sub-optimal arms, the Aol regret over a run of T
rounds is upper bounded by,

*

iE[a(t)] AP (L - 1)E[iﬂk#k*]

,u* - /L*,umin HMmin ,LL*

Lemma 5 (Expected number of pulls of a non-competitive
arm, Theorem 1 in [4]). The expected number of pulls of
a non-competitive sub-optimal arm under CUCB is upper

bounded by,

T T
; £\ —2
E[n""(T)] < Kto + K° > 2(?) +y 3t?
t:Kto t=1
= U{ep = O(1),

and under CTS with Gaussian priors by,
T
Eln'(T)] < Kty + > 3t
t=1
T
+K? )

(ee0G) (1))
t=Kty

= U =0(1),

where tg,t, > 0 are constants defined as,

X 2K'1
to = inf {T > 2 Apin, g g > 4W},
-
< 2K 51
ty = inf {7 > exp (116) : Apin, A > 6 M},
T

where B > 1 is a parameter in CTS (Gaussian priors).

Lemma 6 (Expected number of pulls of a competitive arm,
Theorem 2 in [4]). The expected number of pulls of a com-
petitive sub-optimal arm under CUCB is upper bounded by,
2

© (1 < g108(T) m*
Bln(1)] < 87, +(1+ %)
T
tA2
—I—ZZKteXp e
RIS
= lg,c()?UCB = O(log T),

and under CTS with Gaussian priors by,

log(TA%)
A7

T
tAZ,
+22Ktexp ( — &)
— 2K

c 9
Eln{” (7)) < 18 +exp (118) + 17
k

= Uit = Olog 7),
where 8 > 1 is a parameter in CTS (Gaussian priors).

Proof of Theorems 2 and 3. The results follow by substitut-
ing the appropriate expression for the total number of sub-
optimal pulls from Lemmas 5 and 6 into Lemma 4. ]

VI. CONCLUSIONS AND FUTURE WORK

With next generation communication technologies relying
on higher carrier frequencies, the problem of line-of-sight
occlusion becomes more significant. In systems of the kind
considered in this work, occlusions can effect multiple chan-
nels simultaneously resulting in their performances being
correlated. This correlation can be exploited to identify certain
channels as sub-optimal within a few time steps. We have
shown theoretical bounds on Aol regret to corroborate this
fact. Moreover, through simulations we observed that policies
capable of exploiting correlation perform significantly better
than those that disregard the presence of correlation.

The Correlated Bandit framework used in this work does
not put constraints on the nature of rewards received. It would
likely be beneficial to exploit the fact that in our system,
rewards are always either 0 or 1. Additionally, the theoretical
upper bound on Aol regret for CTS was for Gaussian priors.
An analogous result remains to be shown for CTS with Beta
priors. These topics will be the focus of future work.
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APPENDIX

Algorithm 1: CORRELATED UCB (CUCB)

1 Input: Pseudo-rewards s, 1 (7)
2 Initialize: Set /i, ¢ and ny as 0V k € [K].
3 while 1 <t < K do

4

® 9 N »n

10

11
12
13
14

15

16
17
18
19
20

Schedule update on Channel k;, = ¢
Receive reward r; drawn from Ber(u, )
fik, =14

Nk, (t) =1

t=t+1

while t > K +1 do

Find S = {k : n,(t — 1) > L}, the set of arms
pulled a significant number of times till £ — 1.
Define k°™P(t) = arg maxges, ik,

Initialize the empirically competitive set 4; as {}

for k € [K] do

if mingegt ng,ﬁ(t) > /:chmp (t) then
L Add empirically competitive arms & to the
set: Ay = A, U {k}

Schedule update on Channel k; such that,

o 1
ke = arg maxge a,ugkeme (0} M +\/ (o)

Receive reward r; drawn from Ber(uy, )

p’kt = (iakt “ Mk, (t - 1) + rt)/(nkz (t - 1) + 1)
T}kt(t) =ng(t—1)+1

Phke = D rir =, Skoker (T2)/Tk, (8) VE # Ky
t=t+1

Algorithm 2: CORRELATED TS (CTS)

1 Input: Pseudo-rewards s, 1 (r)
2 Initialize: Set the number of successes Sy (t), failures

Fy(t), and the quantities in CUCB as 0 V k € [K].

3 while ¢t > 1 do

4
5

10

Perform the steps 10 - 14 as in Algorithm 1
For each k in [K], draw a sample 6 (t), where,
9k(t) ~ Beta(Sk(t — 1) + 1,Fk<t — 1) +1)
Schedule update on Channel k; such that
kt = arg maneAtu{kemp(t)} Hk (t)
Receive reward r; drawn from Ber(u, )
Sk, (t) = Sk, (t—1) +r¢
Fk?t(t) = Fkt(t_ 1) + (1 _rt)
Perform the steps 17 - 20 as in Algorithm 1




