
Notes for Video Stabilization using L1 optimal

camera paths

Ishank Juneja

June 29, 2020

1 Procedure for offline video stabilization

The general pipeline for offline video stabilization consists of the following broad
steps-

1. Motion estimation - Find C(t)
To stabilize a video stream, we first need to extract the raw noisy and jerky
camera motion C(t). Only then can we come up with a stabilized version P (t).
For processing on a computer these trajectories will have to be discretized to
Ct and Pt respectively.
In general the raw camera trajectory Ct can be a time indexed sequence of
parameter vectors. The number of parameters in each vector depend on the
choice of motion model for the camera trajectory. In this paper and in most
other literature, Ct is taken from a family of 2D motion models.
Ct is computed iteratively using the relation,

Ct+1 = CtFt+1 =⇒ Ct = F1F2 . . . Ft. (1)

Where the 2D linear motion model Ft is obtained from the sequence of images
comprising the video (I1, I2, . . . , It), and the collection of feature points tracked
(using some suitable algorithm) x.
Here the choice of right multiplication has been taken for transformation rather
than the more usual choice in Linear Algebra of left multiplication. This is
probably to make all computations compatible with row vectors rather than
column vectors.
Every frame pair (It−1, It) is associated with a linear motion model Ft(x). A
certain minimum number of points will need to be present in x depending on
how complex our choice of motion model is. The availability of more than the
required number of points will be better since then, a robust set of parameters
can then be obtained using regression.
To be precise, here Ft is a time dependent update operation that has been cast
as a matrix. For instance, for a 2D affine model, with 6 DOF will be

Ft =

(
at bt
ct dt

)(
x
y

)
+

(
∆xt
∆yt

)
. (2)

1

For this example, the frame update transforms Ft could equivalently be charac-
terized by a parameter vector pt = (at, bt, ct, dt,∆x,∆y)T

2. Obtain a stabilized camera trajectory P (t)
Once the raw camera trajectory C(t) is obtained, we can process it, using an
algorithm of our choice, to obtain a stabilized camera trajectory P (t).
For instance a simplistic method of obtaining such a trajectory could be to re-
place each data point of the parameter sequence Ct by an average over a suitably
sized window w. With w = 1, the stabilized trajectory Pt would look like,

Pt =
Ct−1 + Ct + Ct+1

3
. (3)

In this paper the authors look at a Linear Programming formulation to obtain
Pt. This has been explained in the Section 2.

3. Synthesising stabilized video
Once the stabilized camera path has been obtained, we can move on to syn-
thesizing the stabilized video. This final step is achieved by extracting a crop
window from the existing frames (Using a method described later) and then
applying a stabilization and retargeting transform Bt. The stabilized camera
path Pt can be written as

Pt = CtBt. (4)

Where Bt is the stabilization transform given by Bt = C−1t Pt. As mentioned,
Bt serves two purposes - stabilization and retargeting. When Bt is applied to
a centered crop window, the output is a stabilized version of the original video
with a slightly diminished field of view.

2 Linear Programming Formulation

Taking inspiration from the stable camera trajectories employed by professional
videographers, the algorithm finds a best fit (‘optimal’) camera path composed
of a combination of constant, linear and parabolic segments.
The authors justify this choice by stating that professional cinematographic
qualities are the supposed aim of video stabilization.
The best fit is under the L1 norm. As a result of this choice, the optimization
problem can be cast as a linear programming problem.
The fit is achieved by minimizing a combination of first, second and third deriva-
tives of the stabilized camera path Pt.

Objective
min
{Bt}n1

w1|D(P)|1 + w2|D2(P)|1 + w3|D3(P)|1. (5)

2

Where D is the derivative operator and w1, w2 and w3 are scalar weights chosen
by the programmer and n, is the number of time steps.
Using the relation 4 and the definition |D(P)| =

∑
t |Pt+1 − Pt|, and assuming

that we wish to minimize the sum of the derivatives of every component of Pt,
we can derive the following relations -

|D(P)| =
∑
t

|Rt| (6)

|D2(P)| =
∑
t

|Rt+1 −Rt| (7)

|D3(P)| =
∑
t

|Rt+2 − 2Rt+1 +Rt|. (8)

Where Rt is the residual defined by

Rt = Ft+1Bt+1 −Bt. (9)

The objective 5 requires a search over the space of possible stabilization trans-
forms. Bt can be reduced to a parameter vector pt similar to how Ft was reduced
to one in an earlier example.
Under this new framework, the residual Rt becomes,

|Rt(p)| = |M(Ft+1, pt+1)− pt|, (10)

Where M(Ft+1, pt+1) represents an operator giving a result equivalent to the
matrix product Ft+1Bt+1. For the proceeding discussion, consider pt to be an
N dimensional parameter vector.

To formulate the problem as a linear programming problem (LPP), the non
linear objective specified in 5 must be reformulated. Conversion from an objec-
tive containing an absolute value to a linear objective is described in [1].
For example the conversion of a residual of |D(P)|1 at time instant t would be,

− e1t ≤ Rt(p) = M(Ft+1, pt+1)− pt ≤ e1t , (11)

where e1t is an N dimensional vector, with all entries as positive in line with the
construction illustrated in [1], and the inequalities are component wise. Simi-
larly there would exist slack vectors e2t , e

3
t for residuals associated with the terms

|D2(P)|1 and |D3(P)1| of the objective 5.
On introducing the above family of inequalities such as the one in 11, the ob-
jective 5 becomes,

min
p
cT e. (12)

Where p is the entire N dimensional parameter space over the span of n frames
- (p1, . . . , pN). e is the collection (e1, e2, e3) with each ei representing the collec-
tion of slack vectors for one of the three terms (|D1(P)|1, |D2(P)|1, |D3(P)1|)
across all time steps n - (ei1, . . . , e

i
n). c is a suitably chosen vector/matrix of

repeated entries of the weights w1, w2, w3 such that the objective remains con-
sistent with the one in 5.

3

Constraints in the LPP

In the absence of any constraints on the objective 12, the optimal transform
would simply be Pt = I, with all residuals as 0. To get a useful result, we must
introduce meaningful constraints.

Proximity Constraint

Path Pt should preserve the intent of path Ct. If the original path Ct contained
a zoom in/out, then Pt should follow the same smoothly. Assuming the 6 DOF
affine transform model assumed in 19 is being used for both Ct and Pt, the
following linear constraints can enforce this,

0.9 ≤ at, dt ≤ 1.1 (13)

−0.1 ≤ bt, ct ≤ 0.1 (14)

−0.05 ≤ bt + ct ≤ 0.05 (15)

−0.1 ≤ at − dt ≤ 0.1. (16)

Here the constants have been chosen depending on the role of a certain compo-
nent in the 6 DOF model.
Since all these constants are a part of the parameterization pt, this can be
represented in a more compact form as

lb ≤ Upt ≤ ub, (17)

where U specifies the linear combinations by picking out parameters from pt.

Inclusion Constraint

As mentioned earlier, a crop window must be selected out of every image frame
It, so that the transform Bt can be applied to it to obtained the stabilized frame.
The inclusion constraint says that even after the transform Bt (or its proxy pt)
is applied, the resulting corner coordinates should be contained in the original
frame’s w, h rectangle.
Let the 4 corners of this rectangular crop window be specified by ci = (cxi , c

y
i)

for i = 1, . . . , 4. Then the constraint becomes(
0
0

)
≤
(

1 0 cxi cyi 0 0
0 1 0 0 cxi cyi

)
pt ≤

(
w
h

)
(18)

2.0.1 Saliency Constraint

Certain important (salient) points should ideally never be excluded from the
choice of crop window. These could include a person’s face for instance. Video
stabilization could be achieved without this constraint, but adding it would
enable directed video stabilization. This has been deferred to the next update
so that initial code can get up and running.

4

3 Interpretation of the 6 DOF affine transfor-
mations

The rationale behind the proximity constraints can be understood by decoding
the 6 DOF affine transformation mentioned prior. The update rule 19 can be
rewritten in the homogeneous coordinate system as,

Ft =

at bt ∆xt
ct dt ∆yt
0 0 1

T

, (19)

xtyt
1

T

=

xt−1yt−1
1

T

Ft. (20)

Where the transpose on the update matrix Ft is required but due to the con-
vention of right multiplication.

Comparison with Other Transforms

There is the 3 DOF transform that involves a rotation followed by a translation

Ft =

 cos θt sin θt ∆xt
− sin θt cos θt ∆yt

0 0 1

T

, (21)

then there is the 4 DOF transform that adds in a possible scaling factor s

Ft =

 s cos θt s sin θt s∆xt
−s sin θt s cos θt s∆yt

0 0 1

T

. (22)

In addition to these, the 6 DOF ‘full affine’ model takes into account shear
and aspect ratio transformations, individually these transforms look like the
following (under the homogeneous coordinate system).

Ft =

1 a 0
b 1 0
0 0 1

T

, (23)

Ft =

a 0 0
0 b 0
0 0 1

T

. (24)

The shear transform just acts a skew term that converts rectangles into paral-
lelograms.
The aspect ration transform changes the aspect ration of the underlying scene
by applying a different scales in the horizontal and vertical directions.
Combining all of these gives us the most general (aside from a full 8 DOF
Homography) 6DOF transform described in 20.

5

Interpretation of proximity constraints

Based on the dissection in the previous section, we can now interpret the prox-
imity constraints.

• The constraint 13 demands that the scaling change across 2 consecutive
frames must not be too high. Since in the absence of scaling at and dt
would both be 1, their values have been limited to be near 1.

• Constraint 14 limits the extent of rotation since the bt and ct terms are
related (in magnitude) to sinθ which in turn is proportional to θ.

• In a transformation with no skew (shear displacement) and no aspect
ratio change, |bt + ct| would be 0. Hence to limit the skew constraint 15
is present.

• If there were no change in aspect ration across frames |at − dt| would be
0, so to limit the change in aspect ration across consecutive frames, the
constraint 24 is present.

4 Consistency of mathematical notation

Right from the iterative, right multiplication update rule 1 at the start, it is not
clear what mathematical operation is taking place in the computation of Ct on
every frame update. The camera trajectory Ct, though modelled as a matrix
in 1, is better understood as a vector containing the cumulative result of all
intermediate 2D motion transforms, Ft(x), from t = 1 up to the instant t.

Beyond the relation Pt = CtBt, the form of Ct need not be made explicit since
the lpp formulation deals directly with the inter-frame transforms Ft, however,
if it is to be made explicit, it is the continued product of matrices like 19.
If we were dealing with merely a 3 DOF transform (like 22), then the continued
product would be

Ft =

 cos(
∑

t θt) sin(
∑

t θt)
∑

t ∆xt
− sin(

∑
t θt) cos(

∑
t θt)

∑
t ∆yt

0 0 1

T

, (25)

which makes the interpretation as the accumulated result of all 2D motion mod-
els apparent.

So effectively the reason for the iterative post multiplication of matrices Ct =
F1F2 . . . F1 is to accumulate the incrmental changes from the frame-frame tran-
sitions Ft into a condensed (and accumulated) trajectory, that we can look to
stabilize using the transform Bt.

6

5 References

1 LPP with absolute value in the objective

2 Reference for 2D transformations used as camera models

7

http://lpsolve.sourceforge.net/5.1/absolute.htm
http://www.cs.columbia.edu/~allen/F17/NOTES/homography_pka.pdf

	Procedure for offline video stabilization
	Linear Programming Formulation
	Saliency Constraint

	Interpretation of the 6 DOF affine transformations
	Consistency of mathematical notation
	References

