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1 Introduction

Figure 1: A model for correlated bandits

This work considers a variant of the usual Multi Armed Bandit (MAB)
problem that models correlation between rewards obtained from the arms. This
correlated bandit framework assumes that each arm k is associated with a reward
function gk. Further the reward received on sampling a certain arm k depends
on the realization of the underlying random state X. Say if we sample the arm
k at time step t and the realization of X is xi, then the reward received will be
gk(xi).
Hence each bandit instance with K arms is composed of a discrete random
variable X with an unknown distribution over an alphabet {x1, x2, . . . , xn} and
a collection of arm functions g1(X), g2(X) . . . , gK(X).
An example of such a bandit instance, with 3 arm functions and the distribution
unspecified is given in Figure 2
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Figure 2: An example. On the Y axis we have purchase probability and income
brackets on the x axis

2 Existing Work - The C Bandit Algorithm

The framework described in the previous section is from the reference [2]. The
work of [2] proposes a strategy to exploit the correlation present between the
rewards of various arms by identifying some arms as ‘non competitive’. The arm
to be sampled in a certain time slot is still chosen using a traditional bandit
algorithm like UCB or Thompson sampling but arms that are non-competitive
at a particular time instant are not considered for sampling.
The C-Bandit algorithm uses distribution agnostic side information gathered
for arm l using the pulls of arm k. It skips sampling arms based on pairwise
comparisons between the mean side reward of arm l and the true mean reward
of certain reference arms k.
The C-Bandit algorithm has guarantees on giving orderwise logarithmic regret
for all bandit instances and orderwise constant regret for certain bandit in-
stances. However, the work of [3] perceived two limitations with the C-Bandit
approach.

1. The arm exclusion criteria is agnostic to underlying the distribution of
random variable X

2. Comparisons are pairwise between an arm being inspected as competitive
and certain special reference arms

3 Our previous work - The UCUCB Algorithm

In an earlier work [3], we asked whether it was possible to outperform or match
the regret performance of the C-Bandit arm exclusion approach using a distri-
bution learning based method. In [3] we proposed such an algorithm, called
UCUCB, that outperformed the C-Bandit approach on some bandit instances
and appeared to match it orderwise on most other bandit instance examples
that were considered. Operating under the same bandit framework as the one
described in Section 1, we define the components of UCUCB next
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Pseudo Distribution

As described in [3], UCUCB obtains an estimate of the distribution of random
variable X and uses this estimate to skip sampling certain bad arms. For the
notion of non competitive arms under UCUCB, we first define a quantity called
the pseudo distribution P̃X = [p̃1(t), p̃2(t), ..., p̃n(t)]T , as opposed to the true
unknown distribution PX = [p1, p2, ..., pn]T .
Each component p̃i(t) of P̃X is computed as follows,

p̃i(t) =

t∑
τ=1

βi(τ)

t
. (1)

Where, βi(τ) is given by,

βi(τ) =

{
1

|invk(rτ )| i ∈ invk(rτ )

0 otherwise.
(2)

Here invk(rτ ) is the pre-image of the reward rτ under the function gk (assuming
arm k pulled at time t) and |invk(r)| is the cardinality of the set invk(rτ ).
Hence the pseudo distribution works by essentially diving a totally probability
mass of 1 into |inv(rτ )| equal parts among all the possible realizations of xi for
which a reward of rτ could have been obtained from a pull of arm kτ .

The Confidence Set

Intuitively, the confidence set is the set of realizations of random variable X
having a ‘high enough’ probability of occurrence. At time instant t, we denote
this set as C∗t .
Say, the realizations of random variable X lie in the alphabet {x1, x2, . . . , xn}
which has n indices. To find C∗t , we do the following,

(i) First sort the empirical p.m.f. in descending order and obtain the sorted
indices as q1(t), q2(t), . . . , qn(t)

(ii) Then we pick C∗ = {q1(t), q2(t), . . . , qj(t)} where j is the smallest m s.t

m∑
i=1

p̃i(t) > 1− ε (3)

Thus, the confidence interval is the minimal interval whose cumulative proba-
bility is greater than (1 − ε) where ε is a small number, and is modeled as a
Hyper-Parameter.

Competitive and Non Competitive arms

Under UCUCB, if an arm lies uniformly below another arm for all likely re-
alizations of X, then, with high probability the arm would be sub-optimal or
non-competitive. Hence the name of our Algorithm U-C-UCB (U for Uniform
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and C for Correlated). To quantify the notion of “high probability” we have
previously defined the Confidence Set and to estimate these probability values
we have defined the Pseudo-Distribution.
Using this structure, we say arm k is non-competitive if ∃ an arm j s.t.,

gk(x) < gj(x) ∀ x ∈ C∗ − Clause 1 and g̃k < g̃j − Clause 2 , (4)

where g̃k is the empirical expectation of the reward of arm gk i.e. the expectation
calculated assuming X is distributed according to P̃X .
Here, x ∈ C∗t ensures that the criteria is applied only over realizations of X that
have high probability. Hence existence of an arm j s.t. gk(x) < gj(x) is true
over C∗t suggests sub-optimality of arm k.
For examples of the working of UCUCB, please see Section 4 of the earlier work
[3]

4 Comments on the analysis of UCUCB

Need for the Two Clauses

Clause 1 is the C∗t − εt clause which compares arms based on their function
values over a set of highly probable points. Whereas Clause 2 compares the
expected reward under the Pseudo Distribution. The condition for excluding
an arm has been cast as the intersection of these two clauses. Clause 1 by itself
is certainly not enough to ensure logarithmic (or even sub-linear) regret. Since
even if the estimated pseudo distribution P̃X were a perfect estimate of the true
distribution, that is PX = P̃X , there would still be a constant probability of
excluding the optimal arm k∗ since the reward function relationship between
any pair of arms over a set of points with likelihood ≤ ε will be ignored. A
possible workaround to the problem of there being a constant ε probability of the
optimal arm k∗ being excluded might be to select a decreasing sequence {εt}∞t=1

instead of the constant ε. This sequence could create a diminishing probability
of making a mistake. However bias present in the Pseudo Distribution P̃X would
make such an approach ineffective as we shall see in Section 5.

Approach for Analysis

A requirement to ensure logarithmic regret while we skip sampling some arms
is that the probability of the optimal arm k∗ being excluded from the set of
competitive arms be ‘small enough’. Formally, let E1(t) be the event that
the optimal arm k∗ is excluded from sampling (because of being deemed non
competitive) at time step t + 1. We can lower bound the expected number of
sub-optimal arm pulls using the following construction with elements borrowed
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from Theorem 2 of [2].

E[

T−1∑
t=0

1kt+1 6=k∗ ] =

T∑
t=1

P(kt+1 6= k∗). (5)

P(kt 6= k∗) ≥ P(E1(t)). (6)

Hence we need the sum,

T∑
t=1

P(E1(t)) (7)

to be sub-linear if not bounded.

P(E1(t)) = P(Clause 1 ∩ Clause 2). (8)

Here, 5 follows from the property that E[1E ] = P(E). The relation 6 follows
from the fact that one of the many reasons why arm k∗ is not sampled at time
step t is that it was deemed non competitive.
The truth of Clause 1 depends on the parameter ε and the particular functions
which are part of the bandit instance. Since no distribution is available over
these family of functions it is not possible to utilize the confidence interval
criteria in analysis. Further, the learned pseudo distribution depends on the
bandit instance. The accuracy of the 1−ε confidence set in turn depends on this
learned Pseudo-Distribution. This removes the possibility of any analysis based
on Clause 1, that does not first consider Clause 1, since Clause 1 uses the Pesudo
distribution in a more direct manner. Hence we focus our attention to analyzing
solely based on Clause 2. That is, we consider the analysis of a simplified
UCUCB which has solely the criteria of Clause 2 as the non-competitiveness
criteria. Hence under the new scheme the event E2(t) of the arm k∗ being non
competitive at time t+ 1 would be identical to Clause 2, leading to,

P(kt 6= k∗) ≥ P(E2(t)) = P(Clause 2). (9)

In the next section we present a counter example to illustrate the problem with
any Pseudo Distribution approach, such as the one in 9, for the purpose of regret
minimization.

5 Problems with Distribution Centric Approach
- A counter example

In this section we see that in the absence of strong restrictions on the allowed
family of bandit instances, it is not possible to guarantee sub-linear regret.
The following comments can be viewed as general for any distribution centric
approach.
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• The regret minimization framework does not give the freedom to actively
explore the distribution of the underlying random variable since the aim of
reducing regret is compromised by choosing low return arms that provide
information about the distribution

• The pseudo distribution is information captured through the sampling of
all arms, each arm function introduces its own instance dependent bias
onto the distribution. So it is incorrect to compare two arms using such a
distribution estimate

• There is no instance independent way to combine information from the
pulls of arms l and m to estimate the return of arm k hence any global
comparison basis is inherently flawed

• The C-Bandit approach of [2] overcomes the problem of instance depen-
dence using comparisons with special reference arms. However it makes
an optimistic estimate of the side reward obtained from other arms. This
is the property that introduces the possibility of instance independent
analysis

Next we present a counter example which refutes the possibility of analysis
of a distribution centric approach such as UCUCB in the absence of strong
restrictions on the bandit instances. This counter example demonstates that
there can always be a constant probability of linear regret for certain bandit
instances using a distribution learning based approach in the general case.

A Counter Example

Random variableX lies in the alphabet {x1, x2, x3, x4} and PX = [0.1, 0.7, 0.1, 0.1]
(Rightmost in Figure 3) and the arm functions are as shown in Figure 3. The
expected return of g1(X) (left most) is µ1 = 0.1×2+0.7×4+0.1×1+0.1×1 = 3.2
and the expected return of g2(X) is µ2 = 0.1×2+0.7×3+0.1×3+0.1×2 = 2.8.
This makes arm 1 the optimal arm. The regret minimization algorithm could

Figure 3: Bandit Instance used for the counter example
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start off picking any one of the arms, let us say it breaks ties by picking the
arm with the higher index - arm 2. Further assume that it receives a reward
r1 = 3. Based on the observed reward, the Pseudo Distribution at the start of
time step 2 would then be, P̃ = [0, 0.5, 0.5, 0]. This is the case since a reward
of 3 from arm 2 would mean that X can only come from {x2, x3}, hence a
probability mass of 1 would be distributed equally between the both of them as
is done in the Pseudo Distribution estimation described in 1. Deciding which
arm to sample next based on this estimate P̃ would make arm 2 seem better
than arm 1. So using the known arm functions for arms 1 and 2 we will choose
to sample arm 2 again. Over numerous consecutive samples of arm 2, the es-
timated probability masses of positions x1 and x4, p̃1(t) and p̃4(t), will remain

close to 1−(0.7+0.1)
2 = 0.1. Further through samples of arm 2 x2 and x3 will

remain indistinguishable and their individual probability masses will never ex-
ceed 0.5. As arm 2 is repeatedly sampled due to its perceived superiority, the
Pseudo Distribution P̃ (X) would remain in a 1 dimensional set containing with
its end points as [0, 0.5, 0.5, 0] and [0.1, 0.4, 0.4, 0.1]. It can be verified that for
all distributions lying in this set, arm 2 will be perceived as superior to arm 1.
This will lead to linear cumulative expected regret as is formalized next.

Linear Regret for Bandit Instance

Let E3(t) be the event that the algorithm breaks ties by pulling arm 2 first and
obtains 3 as the reward. Then the expected cumulative regret can be written
as,

T∑
t=1

E[R(t)] =

T∑
t=1

E[R(t)|E3(t)]P(E3(t)) +

T∑
t=1

E[R(t)|Ec3(t)]P(Ec3(t)). (10)

The first term on the RHS contributes linear regret. The second term is expected
cumulative regret when E3(t) does not occur, which would still be non-negative.

UCUCB Conclusion

From the discussed counter example, it is clear that any temporary bias in the
distribution is problematic and can lead to linear regret. Due to the problems
pointed out with the C∗t − εt clause, this problem will hold for certain bandit
instances even if consider the more restrictive compound condition of Clause 1
∩ Clause 2 or think of εt as a time varying sequence. This is the case since, as
we saw actions taken at the start can have an irreversible effect on the perceived
ordering between the various arms. Hence, to use a distribution based approach
for regret minimization, the restriction that all arms be invertible is required.
All arm functions being invertible means that the problem is no longer a partial
observability bandit problem. The problem becomes similar to experts setting
with the restriction that rewards are drawn from a distribution. Also there is
no exploration-exploitation trade off like in the usual bandit setting.
Under this setting, constant expected cumulative regret can be achieved using a
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distribution estimation based method and we propose and analyze an algorithm
for the same.

6 Restricted Bandit setup and an Algorithm un-
der it

The restriction being imposed is that either all arms should be invertible or the
bandit instance should be reducible to an instance with all arms invertible.
The algorithm selects the arm that has the highest expectation under the learned
distribution. We call this the Regret Minimization with Distribution
(RMD) algorithm.
Computing the expectation under the estimated distribution is mathematically
the same as updating the mean reward of arm k using the samples of all other
arms. However, thinking of it as an expectation over the estimated distribution
makes analysis easier as we see next.
Define the quantity g̃k(t), as

g̃k(t) =

n∑
i=1

gk(xi)p̃i(t) (11)

Where the notation followed is, True discrete distribution of random variable
X,

PX = [p1, p2, . . . , pn]T (12)

The discrete random variableX is derived from the discrete alphabet {x1, x2, . . . , xn}.
Our estimate of PX at time step t is,

P̃X = [p̃1(t), . . . , p̃n(t)]T (13)

Algorithm 1 RMD Algorithm

1: Input: Alphabet {x1, ..., xn}, Functions {g1, ..., gK}, All Invertible
2: Initialize : t = 0, g̃k =∞ (like Vanilla UCB)
3: for Every round t do
4: g̃k(t)←

∑n
i=1 gk(xi)p̃i(t)

5: kt = arg maxk g̃k(t)
6: Receive reward rt by sampling arm kt
7: Record the realization of x, x← g−1

k (rt)
8: t← t+ 1
9: p̃i(t+ 1)← (p̃i(t)× t+ 1x=xi)/t

10: end for

Interlayed Active Exploration for Regret Minimization

A distribution learning based approach that can provide sub linear expected
cumulative regret could be active exploration with a successively reducing (with

8



time step t) probability interlayed active exploration component. That is we
actively explore the distribution at every time step with probability εt. If we
think of a decreasing series of the form 1

t , then in the limit we actively explore
the distribution an infinite number of times. However, as is well known the sum
of the harmonic sequence,

T∑
t=1

1

t
, (14)

though sub linear is super logarithmic, with the difference,

lim
T→∞

T∑
t=1

(1

t
− log (t)

)
= γ. (15)

Where, γ is the positive Euler–Mascheroni constant. Further, it is known from
the study of the Riemann Zeta function that the sum,

lim
T→∞

T∑
t=1

1

tα
, (16)

converges to a finite constant ∀α > 1. Hence any diminishing sequence with
α > 1, would not be sufficient exploration since even in the limit it would
actively explore only a constant number of times. Any constant number of
samplings to estimate the distribution would be insufficient to ensure sub linear
regret as can be verified easily. Other families of decreasing sequences could be
constructed using known functions like log (T ) and exp (t), however we could
not find a sequence that in the sum would not only be sub linear, but also sub
logarithmic.

7 Analysis of RMD

Lemma 1: Hoeffding Inequality
For a random variable X ∈ (a, b)

P
(∑t

i=1Xi

t
− µ ≥ ε

)
≤ exp

( −2tε2

(b− a)2

)
(17)

Lemma 2: The Expected reward under the distribution P̃X is a random vari-
able averaged over t samples and bounded between 0 and B.

Proof. Our estimates of the distributions p̃i(t) are each random variables aver-
aged over t samples since,

p̃i(t) =

∑t
τ=1 1g−1

kτ
(xτ )=xi

t
(18)
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Since g̃k(t) =
∑n
i=1 gk(xi)p̃i(t), we have the following,

g̃k(t) =

∑t
τ=1

∑n
i=1 gk(xi)1g−1

kτ
(xτ )=xi

t
, (19)

this can be written as,

g̃k(t) =

∑t
τ=1 Y

k
τ

t
. (20)

Where the random variable Y kτ is a linear combination of the random variables
1g−1

kτ
(xτ ). Now, the random variable Yτ is itself bounded between 0 and B.

Lemma 3: The expected number of sub-optimal pulls is upper bounded by
a constant.

Proof. Let E(t) be the event that the optimal arm k∗ is not pulled in time slot
t+ 1.

P(E(t)) = P(max
k

g̃k(t) > g̃k∗(t), k 6= k∗) (21)

≤
∑
k 6=k∗

P(g̃k(t) > g̃k∗(t)) (22)

=
∑
k 6=k∗

P(g̃k(t)− g̃k∗(t) > 0) (23)

=
∑
k 6=k∗

P(g̃k(t)− g̃k∗(t)− (µk − µ∗) > µ∗ − µk)) (24)

=
∑
k 6=k∗

P(g̃k(t)− g̃k∗(t)− (µk − µ∗)) > ∆k)). (25)

Using the notation of Lemma 2, we have

=
∑
k 6=k∗

P
(∑t

τ=1 Y
k
τ −

∑t
τ=1 Y

k∗

τ

t
− (µk − µ∗)) > ∆k)

)
. (26)

Applying the Hoeffding Inequality from Lemma 1 and using the fact that each
of the Y variables are bounded between 0 and B, we have,

≤
∑
k 6=k∗

exp
(−2t∆2

k

(2B)2

)
(27)

≤ K exp
(−t∆2

min

2B2

)
. (28)
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From the property of indicator random variables, we know that,

E[1kτ+1 6=k∗ ] = P(E(t)) (29)

Hence, the total number of sub optimal pulls,

E[

t−1∑
τ=0

1kτ+1 6=k∗ ] =

t∑
τ=1

P(E(τ)) (30)

≤ K
t∑

τ=1

exp
(−τ∆2

min

2B2

)
(31)

Which in turn is upper bounded by the constant infinte sum.

Theorem 1. The expected cumulative regret is upper bounded by,

E[R(t)] ≤ K∆max

t∑
τ=1

exp
(−τ∆2

min

2B2

)
(32)

Which is a constant

Proof. The proof is easy to see from the definition of expected regret,

E[R(t)] =
∑
k 6=k∗

∆kE[nk(t)] (33)

≤ ∆max

∑
k 6=k∗

E[nk(t)] (34)

= ∆max

t∑
τ=1

E[1kτ 6=k∗ ] (35)

Substituting the sum
∑t
τ=1 E[1kτ 6=k∗ ] from Lemma 3 completes the proof.

7.1 Restriction Relaxed

If the restrictions that the arms are invertible be relaxed, then the bound on the
number of pulls of suboptimal arms which involves application of Hoeffding’s
Inequality (27) wouldn’t hold true any longer due to the absence of unbaised
estimates of the arm rewards. Hence, number of times a sub-optimal arm is
pulled won’t necessarily be a constant leading to the regret being not necessarily
logarithmic.

8 (0, δ)-PAC Algorithm for Correlated Bandits

Since distribution learning is not suitable for regret minimization, we look at
the pure exploration setting of Multi Armed Bandits.
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We propose a (0, δ)-PAC Algorithm for a correlated bandit based on RRPULL
+ PIEST algorithm by Gupta et al. (2018) [1] that learns distributions of re-
wards from indirect samples and the Successive Elimination algorithm.

Given a set of arms with known reward distributions, based on a latent random
variable X, gj(X)∀j = {1, 2, ...,K}

8.1 Preprocessing

If there any support points x′is such that their reward is same for all support
points for all arms, then merge them into a super support point xi′ . For example,
in the distributions of two arms as show below, support points x2 and x3 can be
merged into one superpoint. Further all rewards are normalised between [0, 1].

Thus, after preprocessing, we have a set of arms, S = {1, 2, ...,K} with rewards
gj(X)∀j = {1, 2, ...,K} which are a function of the latent random variable X
with support points X = {1, 2, ..., n}.

8.2 Notation

Borrowing notation from Gupta et al. (2018) [1], we define the following. Let
P̃X = [p̃1(t), ..., p̃n(t)]T be the estimated probability distribution of latent ran-
dom variable, X, PX = [p1(t), ..., pn(t)]T . For each arm k, let {zk,1, ..., zk,mk}
denote the set of possible outcomes of the function gk where mk is the number
of distinct outputs of gk. The information about gk required to estimate the
probability distribution of X can be captured in matrix Ak with mk rows and n
columns called the Sample Generation Matrix for arm k. Ak(i, j) = 1 if output
zk,i could have been generated by xj in arm k. A = [AT1 , A

T
2 , ..., A

T
K ] of size

m× n where m = m1 +m2 + ...+mK . Let qk,i be the probability of observing
zk,i each time arm k is pulled and define Q = [q1,1, ..., q1,m1 , ..., qK,mK ]T . For
each arm k and output i, we hence have the following equations which when
solved will give us the probability estimate of X.

qk,i =

n∑
j=1

Ak(i, j)pj (36)
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APX = Q =⇒ PX = A+Q (37)

where A+ is Moore-Penrose inverse of A.

From estimates of probability distribution of X, we can estimate the arm re-
wards at time t as,

g̃ts =

n∑
j=1

gs(xj)p̃j(t) (38)

8.3 Algorithm

The algorithm estimates the probability distribution of X indirectly by pulling
arms and obtaining rewards dependent on a realisation of X. In every iteration,
each arm is pulled once in a round robin manner and the estimates are updated.
At the end of each round, we check for arms that are far enough from the optimal
arm based on confidence intervals and eliminate them. The pseudocode of the
algorithm is as follows.

Algorithm 2 Successive Elimination for Correlated Bandits

Input: Alphabet {x1, ..., xn}, Functions {g1, ..., gK}, Set of arms S
Preprocess by merging into superpoints
Initialize: t = 0, tk = 0 ∀ k, tk,i = 0 ∀ i, k, p̃j(0) = 1

n ∀ j
while |S| > 1 do

Pull arm st = mod(t, |S|) + 1, observe output yt
tst = tst + 1, t = t+ 1
if yt = zst,i then
tst,i = tst,i + 1

end if
q̂s,i =

ts,i
ts
∀ i, s

Obtain estimates p̃j(t) as P̃X = A+Q̂

Let g̃tmax = max
s∈S

g̃ts, αt =
√

log(cKt2/δ)
t

For every arm s ∈ S s.t g̃tmax − g̃ts ≥ 2αt. Set S = S\s
end while
Return: S

8.4 Analysis

Theorem 2 (Gupta et al., 2018 [1], Theorem 1). It is possible to achieve asymp-
totically consistent estimation of probability distribution of X if and only if
rank(A) = n.

Theorem 3 (Gupta et al., 2018 [1], Theorem 6). It is possible to achieve esti-
mation error of probability distribution of X of O( 1

t ) if rank(A) = n.

The preprocessing step ensures that all instances have rank(A) = n.
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Theorem 4. The empirical estimate of the distribution PX , P̃X = A+Q̂ is
unbiased

Proof:
By the definition of q̂s,i, Q̂ is unbiased. Therefore, E[Q̂] = Q. Hence,

E[P̃X ] = E[A+Q̂] = A+E[Q̂] = A+Q = PX (39)

Theorem 5. The Successive Elimination for Correlated Bandits is (0, δ)-PAC

algorithm, and with probability (1−δ) its arm complexity is bounded by O
(

log(K/δ∆min)
∆2
min

)
Proof. Part (A) - Proof of (0, δ)-PAC
For any time t and action s ∈ St, we have,

Pr[|g̃ts − µs| ≥ αt] ≤ exp−α
2
t t ≤ δ

cKt2
(40)

because µ̂ts is an unbiased estimate of µs from [4].
With probability at least (1− δ

K ) for any time t and action s ∈ St, |g̃ts−µs| ≤ αt.
Hence, with probability (1− δ), best arm is never eliminated as as αt → 0 as t
increases, eventually every non-best arm is eliminated. Hence the algorithm is
(0, δ)-PAC.

Part (B) - Sample Complexity
To eliminate a non-best arm si, we need to reach a time ti such that,

∆̂ti = g̃tis∗ − g̃tisi ≥ 2αti (41)

where s∗ represents the best arm. Definition of αt combined with the assumption
that |µ̂ts − µs| ≤ αt yields that,

∆i − 2αt = (µs∗ − αt)− (µsi + αt) ≥ g̃s∗ − g̃si ≥ 2αt (42)

which holds with probability atleast (1− δ
K ) for

ti = O

(
log(K/δ∆i)

∆2
i

)
(43)

The last non-best arm will thus be eliminated and the best arm output at

t = O

(
log(K/δ∆min)

∆2
min

)
(44)

where ∆ = min
j

∆j , the sub-optimality gap between the best and the second

best arm. The implicit improvement, due to the correlated bandit framework,
in concentration of rewards of all arms by pulling an arm reduces the number of
times that each arm has be pulled. This, thus, amounts to the gain we achieve
in sample complexity over the vanilla Successive Elimination algorithm.
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