Hopfield Networks as Dynamical Systems

Ishank Juneja - Student, IIT Bombay
April, 2020

1. Introduction

Inspired by the neuronal circuits in brains, artificial neural
networks consist of numerous identical computational units
performing simple operations on individual components of
an input stimulus.

For instance the units present in neural network architec-
tures commonly used for pattern recognition tasks, like
hand-written character recognition, use an affine transfor-
mation on their input component. This is followed by a
thresholding operation performed using the same unit.

A neural network can be viewed as a directed graph with
the units of the network as nodes, and edges representing
dependencies between nodes. That is, the inputs to a node
will be the results from other nodes, each weighted by the
respective edge weight.

Many of the effective deep learning architectures used for
sophisticated pattern recognition tasks, such as computer vi-
sion, are purely feed-forward in nature. That is, the nodes in
the network are arranged into a hierarchy of layers. Results
of intermediate computations are passed from one layer to
the next with no feedback from higher layers to any previ-
ous layer. A recurrent neural network on the other hand is a
network architecture where such feedback connections can
exist due to the presence of internal state. That is, the cur-
rent output of a certain node can depend on both the current
inputs and the past inputs and outputs. Mathematically,

Yk = F(Xk,Xk—1,...,X0,Yk—1,Yk-25---»¥0). (1)

Where yy and xi are the vector of outputs and inputs re-
spectively at time step k.

In this paper we will be looking at a model called Hopfield
Networks first introduced in (Hopfield, 1982). The Hopfield
Network is a recurrent neural network where the states take
values in the set {0, 1}". It should be noted here that these
are different from Boolean networks where dynamics fol-
low Boolean algebra. The Hopfield model provides us with
numerous useful applications such as content addressable
(associative) memories, error corrections and approximate
solutions to optimization problems. Hopfield networks are
interesting from a dynamical systems perspective since they
have dynamics governed by an underlying Lyapunov func-
tion.

2. Stability of Discrete-Time Systems

Given a time-invariant autonomous discrete time dynamical
system with n dimensional state at step k given by x(t) €
R™, its update rule will be given by,

x(k + 1) = F(x(k)).)

Where F : R™ — R" is the next state map of the dynamical
system. A fixed point x¢ of the dynamical system is a point
in the state space which maps to itself under F. Therefore,
all fixed (or equilibrium) points satisfy the relation

Xf = F(Xf). (3)

Let us assume that xy is a fixed point of the dynamical
system, i.e. X¢ satisfies the relation 3. Further let x,, be the
state from which the system starts at step & = 0. Unlike
continuous time dynamical systems, where a unique solution
to the differential equation describing system dynamics may
or may not exist, the recurrence relation 2 guarantees the
existence of a unique state trajectory s(k, X,) given start
state x(0) = x,. Further, we can see that if the system were
to start in the state x, = Xy, the trajectory in state space
would simply be s(k, x¢) = x¢ Vk.

Definition 1 A fixed point x¢ of a discrete time dynamical
system is said to be stable if for each ¢ > 0, there exists

0 = 6(€) such that,

[|x0 — x¢|| < d(€) = ||s(k,%0) — x¢|| <eVE>0. (4)

Next we look at another property present in the fixed points
of Hopfield Networks,

Definition 2 A fixed point X¢ is said to be attractive if there
exists an 1, such that

[Ixo — X¢|| < 1o = s(k,%Xo) — x¢ as k — co. (5)

If the state x(k) of the system were to lie in some finite or
countable set instead of R, then the norm || - || in definitions
1 and 2 will be replaced by a Hamming distance metric.
Next we define the notion of asymptotic stability of a fixed
point,

Hopfield Networks as Dynamical Systems

Definition 3 The fixed point X¢ is said to be asymptotically
stable if it is both stable and attractive.

Lyapunov’s Second Method

Now that the definitions of stability have been established,
we look for a sufficient condition for a fixed point to be sta-
ble. Lyapunov’s second method (also known as Lyapunov’s
direct method), provides a tool to define a notion of stability
of equilibrium points of both continuous and discrete time
dynamical systems. In this paper we focus on the latter.

Theorem 1 Given that a discrete-time dynamical system
has a fixed point xg, the fixed point will be stable if 3
a scalar valued function (called a Lyapunov function)
V (x(k)) such that in a neighberhood around X,

V(x) >0 (6)
V(x) =0 <= x=xy, (7

and the system dynamics are such that,

V(x(k+1)) < V(x(k)) Vi > 0. (8)

3. Hopfield Networks

Both computing circuits designed by humans and neuronal
circuits in our brains consist of numerous identical units
interacting with one another. However, unlike meticulously
planned computing circuits, biological neuronal circuits
are evolutionary in nature, so they don’t involve precise
planning. Keeping this in mind, Hopfield’s work in the
1980s asked the question whether some of the properties of
a large number of interacting identical neuronal units are
emergent from the collective. In this paper, we look at such
a possible origin for the stability of memories.

As mentioned the Hopfield Network model in consideration
has a binary state associated with each neuron unit. We
assume that the binary state takes a value of either 1 or
0. Further the state of every individual node is updated
randomly and asynchronously with a mean update rate of
W. The model is inspired from biological circuits and
properties that exist in spite of asynchrony have interesting
implications for biology.

Let there be a total of n units in our network and further
let each unit be indexed by an index ¢ € {1,2,...,n}. The
directed edge e;; connecting node j to node ¢ has a weight
T;; associated with it. If the edge e;; does not exist, we take
T;; = 0, in particular, we assume that self edge e;; does not
exist. Lastly, we assume that there are no inputs to any of the
units besides those coming in from other nodes. If the net
input to the i*" node is given by hi(k) = 3, Tyjx;(k),

then the state x; of the 7*" unit is updated as per

1 if hi(k) > 0
zi(k+1)={ (k) ifhi(k) =0 9)
0 if (k) < 0

Thus, each neuron randomly checks whether it is above
or below a threshold and updates its state accordingly. Al-
though quite simplified, this update rule is inspired from
biology where a large enough input to a neuron ensures that
it spikes and in the absence of a such an input a neuron
remains silent.

A corollary of arbitrary and stochastic asynchronous up-
dates is that the probability of two nodes ¢ and j updating
their states x; and x; at the same time step is exactly 0. To
perform computations with a general topology, the network
dynamics need to be followed in detail to work out the fu-
ture states. However by associating a Lyapunov function
with the system we can understand the progression of its
dynamics without explicitly computing its state trajectory.
In the absence of any known fixed points of the system,
instead of the Lyapunov function V' (x), we can look for an
energy function FE(x) that only has the monotonicity prop-
erty 8. Subsequently when a fixed point x¢ is identified, its
stability can be shown by obtaining a Lyapunov function
by shifting the reference level of E(x) to the value F(x¢),
i.e. the energy function evaluated at the fixed point. To be
precise, given a monotonically decreasing E(x), we choose,

V(x) = E(x¢) — E(x). (10)
Next we examine when E/(x) exists for a network.
Theorem 2 If the edge weights are symmetric, that is if

T;; = T}; and if there are no self edges, meaning T;; = 0,
then the network admits an energy function of the form,

> @ik Tya(k), (D

1<ij<n
where x; is the it" component of the n dimensional state X.

Proof of Theorem 2

The difference in energy between two successive time steps,
AF is given by,

AE = E(x(k+1)) — E(x(k)) (12)
_ % > (24 T k) — s + DTk + 1)
J -

Hopfield Networks as Dynamical Systems

Since updates are asynchronous, only one unit changes at a
time, let us assume it has index [. Then, using the symmetry
of the weights matrix, A F is given by,

AE = —(xy(k+1) —21(k)) Y Tiy; (k) (14)
J#l

Using the system dynamics specified in equation 9 and the
fact that each component of the state lies in {0,1}, it is
easy to see that the expression in 14 will be non-positive,
thereby making the function E(x) a valid candidate for
establishing stability of fixed points. Also, since only a
single component of the network state is updated at a time,
and the mean update rate of all the units is known to be a
fixed value W, any fixed point of such a dynamical system
will be attractive as per the definition 2. In the next section
we shall see how we can place fixed points and use the
Hopfield Network as an associative memory.

4. Constructing an Associative Memory

An associative or content addressable memory is an infor-
mation retrieval system that given some input, returns the
address of the memory closest to the input data. Hence an
associative memory can be seen as a system capable of re-
call based on partial or even slightly corrupted information.
For instance consider the original and corrupted versions
of the letter “T” in figure 1. A well designed associative
memory would be able to store numerous letters and would
match the corrupted ‘T’ to the true letter when queried with
the corrupted version.
Another application of an associative memory could be the
complete recall of the information associated with an entity
using only a few of its attributes. As an example, given the
name of a person, an associative memory would be able to
quickly provide information like their place of residence
and favourite color. Next we look at how the weights matrix
T of a Hopfield network can be chosen in a way that these
interesting properties of an associative memory emerge.
At any time step k, the state of the network consists of the
vector x(k) encoding n bits of information. If the matrix T
is symmetric with all its diagonal elements as 0, then from
theorem 2, we know that a fixed point x, will be stable
and attractive to all trajectories with start state x,, lying in a
certain ¢ neighborhood of x¢.
If we wish to store a state vector x° € {0,1}" in a network,
we can choose the weights matrix as per the following rule,

2¢8 — 1)(2x% — 1 if 7]
ﬂjz{(w1 A
0 ifi=j

Original ‘T’

half of image
corrupted by
noise

Figure 1. Mapping of stimulus to correct memory. Image taken
from (Rosen)

Using these weights, we can show that x* will be a fixed
point of the network as per the definition 3. Let the state of
the network at the k*" time step be x*

1 ity Ty >0
wi(k+1) = S @i(k) if Y, Tias =0 (16)
0 if Y, Tijas <0

> Ty = (22 - 1) (225 — 1)z (17)

JFi J#i

From the right hand side of 17 it can be seen that,

> Tijai > 0whena) =1 (18)
JFi
ZT”IJS <Owhenz; =0 (19)
J#i

Using 18 and 19, it is clear that when the matrix T is defined
as per 15, x° becomes a fixed point of the network. We
should note here that x° is not the only fixed point associated
with the network, in particular x = 0 is always a fixed point
under the dynamics 9. Thus we have constructed a content
addressable memory and have stored a single entry x* into
it. x° could, for instance be the original letter ‘T’ in figure
1, and when a corrupted or incomplete version of the letter
is presented as the initial state X, to the network, it would
converge onto the original ‘T’ in memory.

To store more memories in our associative memory, we
need to incorporate a large number of fixed points into our
network. Let us say we wish to store m memories, each of
which is an n bit vector x°, indexed by s. A weights matrix
T complying with this requirement can be achieved using

Hopfield Networks as Dynamical Systems

the following,

T, — S (20— 1)(225 — 1) ifi#
0 ifi =
(20

We wish to check if our programmed memories do indeed
correspond to fixed points. Assuming that the state of the
network has reached the programmed memory with index
s', the net input to the i*” unit will be given by

S Tad = (@215 - 1) {Z(Qm? - 1)3;;'} 1)

i s i

Typically information that needs to be stored as a mem-
ory goes through some pre-processing in both artificial and
biological systems. If the result is a binary string, then
we expect each of the n components to be either 0 or 1
with equal probability. If this is not the case, that is, if
P(z; =1) > P(z; = 0) then the asymptotic equipartition
property would allow us to perform compression on the
set of such n dimensional vectors. Thus, random binary
vectors simulate memories generated through efficient pre-
processing.

If we treat each component of a memory x° and that of
the current state x* as independent binary {0, 1} random
variables with P(z; = 1) = P(z; = 0), then the bracketed
term in 21 has an expected value of 0 when s # s’ and of
(n —1)/2 when s = s’. Thus, we can write the expected or
average value of the input to the i*”* unit as,

< 3 ﬂjx§’> = (225 —1)(n —1)/2 22)

J#i

The expression in 22 is positive when xf/ = 1 and neg-
ative when xf/ = 0, therefore once any of the memories
programmed into the network is reached, it is quite probable
that the state will not be updated again. For a more quantita-
tive analysis using the central limit theorem, the reader is
referred to (Latham, 2018).

As long as stochastic effects are small, the essence of reach-
ing a certain fixed point on starting from a closely related
start state by flowing down the energy landscape of 11 re-
mains. A caveat here is that the flow in the phase space
towards a certain memory is not entirely deterministic but
rather is a statistical choice between the states that its cur-
rent state most resemble.

An advantage of constructing an associative memory in this
manner is that it has the potential to be extremely efficient
in terms of its access time compared to the results that are
obtained through traditional hardware.

The associative memory described could also be used as a
tool for error and erasure correction among a set of binary

strings. Once the network is initialized with the corrupted
binary string as its start state, the network can be made to
follow its usual dynamics, while keeping the nodal states
known to be correct as static.

S. Extensions of the Hopfield Model

In this section we look at extensions of the Hopfield model
that have been mentioned in (Hopfield, 2007) but have not
been elaborated on or justified mathematically prior to this
work as far as the author is aware.

External Inputs to Network

To make the model presented in Section 2 more general,
external time invariant inputs can be added to every unit
alongside the existing inputs from other nodes. That is, if
the external input to the it" node is I;, the net input to it
will be h;(k) = I; + >, ; T;jx;(k). The change to the
dynamics introduced by I; can be captured by replacing
the default threshold of 0 in equation 9 with —I;. For this
model, the stability of a fixed point can be established by
using the below energy function,

Bx(k) =~ 3 Laih) 5 3wk (k)
1<i<n 1<i,j<n

(23)

lth

For this energy, AF when the [*"* node is updated will be

AE = —(xi(k + 1) — 2(k)) (Il + Zlexj(k‘)),
J#l o4

which is always non positive. For this new model, a fixed
point cannot be chosen using the rule 15 in section 4 since
the internal state alone is no longer responsible for updates.

Asymmetric Weight Matrix

Until this point, we have made the assumption that the
matrix 7' is symmetric, that is T;; = T};. Here, we relax
this assumption by considering an augmented weight matrix
S with S;; = A\Tijp;. T continues to be a symmetric
matrix with T;; as defined in either 15 or 20, and A, » € R".
As we shall see, we further require each component of A
and u to be positive.

Borrowing from 11, we can define the following energy
function for this model,

E(x(k)):—% 3 @sﬁ]—(k) (25)

Hopfield Networks as Dynamical Systems

On substituting the definition S;; = A;T;; 15 into 25, we get
an expression for AE identical to 14 from Section 3. Next
we verify that the technique to choose fixed points described
in Section 4 still holds good. Rewriting equation 21 using
the new weights we get,

S Suad = n > (25 - 1) [ZM@:C; - 1);5;/].

i i
(26)

Under the assumption that for every component of a binary
string, the values of 0 and 1 are equally likely,

<ZSU333J> = AL(fo, — I)Z% (27)

J#i J#i

Which just like 22 is positive when xf/ = 1 and negative
when xf, = 0, thereby ensuring that x*' remains a fixed
point under the new scheme.

References

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the National Academy of Sciences of the United States
of America, 79(8):2554-2558, April 1982. ISSN 0027-
8424. URL http://view.ncbi.nlm.nih.gov/
pubmed/6953413].

Hopfield, J. J. Hopfield network. Scholarpedia, 2(5):1977,
2007. doi: 10.4249/scholarpedia.1977. revision #91363.

Latham, P. Hopfield networks, 2018. URL
http://www.gatsby.ucl.ac.uk/~pel/
tn/notes/hopfield.pdf. [Online; accessed April
27, 2020].

Rosen, B. Hopfield networks. URL http:
//web.cs.ucla.edu/~rosen/161/notes/
hopfield.html. [Online; accessed April 27, 2020].

Vidyasagar, M. Nonlinear Systems Analysis (2nd Ed.).
Prentice-Hall, Inc., USA, 1993. ISBN 0136234631.

http://view.ncbi.nlm.nih.gov/pubmed/6953413]
http://view.ncbi.nlm.nih.gov/pubmed/6953413]
http://www.gatsby.ucl.ac.uk/~pel/tn/notes/hopfield.pdf
http://www.gatsby.ucl.ac.uk/~pel/tn/notes/hopfield.pdf
http://web.cs.ucla.edu/~rosen/161/notes/hopfield.html
http://web.cs.ucla.edu/~rosen/161/notes/hopfield.html
http://web.cs.ucla.edu/~rosen/161/notes/hopfield.html

