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I. INTRODUCTION

The simplicity of the Kalman Filter in solving linear se-
quence estimation problems has made it the tool of choice for
Engineers for the past many decades. However the Kalman
Filter algorithm is only applicable to the estimation of signals
that follow a linear state space model.

In Control Engineering, more often than not, we need to deal
with systems that do not follow a linear model, but instead
can be described through non linear functions. For instance, a
popular application of the Kalman Filter is in sensor fusion for
Autonomous Vehicle Navigation. As an autonomous vehicle
moves along its trajectory, it constantly receives complemen-
tary information from numerous sensors such as RADAR and
LIDAR. The job of the filtering algorithm is to fuse the
incoming information to make well informed decisions about
the steering angle. Combining this information will involve
vector calculations which in turn invariably involve non-linear
trigonometric functions.

Soon after the introduction of the Kalman Filter in 1961, an
Extended Kalman Filter (EKF) was proposed. The EKF solves
the non-linear estimation problem by locally linearizing the
State Transition and Measurement functions. This technique
proves to be useful for many applications that can be modelled
as being approximately linear. Moreover, the Taylor series
becomes a more accurate local estimate of a function if the
update frequency is high. Despite its merits, the EKF suffers
from many issues which are discussed later.

To overcome the drawbacks posed by the EKF, Julier and
Uhlmann introduced the Unscented Kalman Filter (UKF) in
[1]. The UKF overcomes many of the challenges that the EKF
fails at and is overall more robust in the face of more intense
non-linearities. In this paper, we compare the merits of the
these two approaches to non-linear filtering problems.

II. PRELIMINARIES AND NOTATION
The linear discrete time invariant state space model is usually
written as,
Try1 = Frrg + Grug (1)
Yk = Hrxp + g (2)

Under a general non-linear assumption, these equations will
become

Tpy1 = f(l‘k-, k) + Guy, 3)
yr = hxk, k) + vy “4)

Here f(), h() can in general be any time dependent non-linear
functions, however in this paper, we only consider the case
of non-linear functions that are constant with time.

In this notation, y; are the observable vectors and xj, is the
unknown underlying state of the system. As usual, wy and
vy, are the process noise and measurement noise respectively.
Usual assumptions such as noise terms being zero mean and
uncorrelated apply.

II1. EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) uses the linear Taylor
Series approximation of a function to transform it into a time
variant linear state space model.

To derive the linear model, first we must find the Jacobian
matrices of the functions f(), h()
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Once the Jacobian matrices of (5) and (6) have been derived
analytically or numerically, the non-linear state space equation
can be linearized with the state and observation variables as
the error terms

6k = x — 2 and 2z = yr — h(zF), where 2t is the
reference trajectory the state space takes in absence of any
external disturbances. Once a linear state space model is
available, the problem reduces to a usual Kalman Filtering
problem.

The use of the EKF has two well known drawbacks.

1) Linearisation can produce a highly unstable filter if
assumptions of local linearity are violated.

2) The derivation of the Jacobian Matrices is non trivial and
leads to implementation difficulties. Moreover, the Jaco-
bian may be expensive to derive numerically and may
not even exist in case of non-differentiable functions.

These drawbacks are resolved to some extent by using the
Unscented Kalman Filter which is described next.

IV. UNSCENTED KALMAN FILTER

The Unscented Kalman Filter (UKF) makes uses of the
principle that a set of discretely sampled points can be used
to parameterize mean and co-variance.

In the UKF, the distribution of every state is specified using



a minimal set of deterministically chosen points called sigma
points. To choose these sample points the UKF takes the help
of the unscented transform.

The unscented transform is a technique used to approximate
the distribution of a random variable undergoing a Non-Linear
transformation. The procedure for it goes as follows:

1) Choose a set of 2n 4+ 1 Sigma Points, such that their
sample mean is the true mean of the state Z, and the
sample covariance is the error covariance P,,. Here n is
the dimention of the state space. In particular the primary
reference [1] provides a deterministic way to get these
points.

2) Apply the non-linear function to each sigma point to
yield a cloud of transformed points with sample mean
yy and covariance P,,. This is ensured by weighting
each point y; by a specially designed weight W,. That
is, we form the equations:
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Once the 1°¢ and 2" order statistics for the transformed points
(y’s) are known, the usual innovations recursion procedure can
be follow to apply Kalman Filtering.
Desirable properties of this transform, especially when com-
pared to the EKF are the following,

o The mean is approximated to a higher order of accuracy
than the EKF
o Through this transform, we approximate the distribution
of the state variable x rather than the non-linear func-
tion. This allows information from higher orders to be
accommodated in the transform.
o The computation or even existence of the Jacobian Ma-
trices is not required.
In the next section we compare the performance of the EKF
and the UKF on an aircraft re-entry problem to recreate the
results from the reference [1].

V. AN AIRCRAFT RE-ENTRY PROBLEM

Consider the problem of tracking the trajectory of an

aircraft as it performs atmospheric re-entry from a very high
altitude and at a very high speed. A radar shown in figure
1 as a circle, relays information to the ground-station. The
forces acting on the object are atmospheric-drag, gravitation
and random buffeting accelerations which are modelled as
noise.
As can be seen from the simulated trajectory of figure 1,
initially the motion of the vehicle is straight-line ballistic,
but eventually, because of drag, the motion becomes almost
vertical.

To illustrate the merits of the EKF and the UKF, we will
formulate the tracking problem as a non-linear estimation
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Figure 1: An example trajectory followed on re-entry

problem. The state x of the vehicle contains the following
components:

e x7 and x5 are the x and y coordinate of the vehicle with
respect to the grid shown in figure 1

e x3 and x4 are the x and y components of the vehicles
velocity

e x5 Represents a constant aerodynamic property of the
vehicle. This constant is unknown at the start and is
estimated throughout.

The differential equations associated with the model are as
below,

7y = z3(k) ©))
Za = x4(k) (10)
23 = D(k)x3(k) + G(k)x1(k) + vi(k) (11)
23 = D(k)x4(k) + G(k)xa(k) 4+ va(k) (12)
Z5 = v3(k) (13)

(14

Here, D(k) is the drag force term, G(k) is the gravity
term, v;(k) are the process noise terms. Defining R(k) =
x2(k) + z3(k) as distance from Earth’s center and the total

speedV (k) = \/x3(k) + z3(k), we can write,
) = sy exp (B vy as)
G(k) = — ;T(”];’) (16)
(k) = Boexp(xs(k)) (17)

The values of all constants with 0’ subscript were taken from
the reference [1]. Further all state and covariance matrix ini-
tializations were kept the same as in the reference paper. Their
values can be seen in the code files under the code/vehicle
folder.



The measurements from the radar are in the form of a range
r and a bearing angle 6, equations for them are given by,

r(k) = V/(21(k) = 2,)2 + (22(k) — yr)2 +wi(k)  (18)

-1 -TQ(k) — Yr

o(k) = tan (m) + wa (k)
Here, wy(k) and wy(k) are measurement noise terms that
arise from random disturbances in the radar receiver.

Based on the above formulation, the ODEs were discretized
using Euler’s Scheme. MATLAB tools were then used to
apply Kalman Filtering to this state tracking problem.

The results from applying the EKF and the UKF to this
problem were computed and are shown in the following
figures.

(19)

proximation is unsteady and has large error and error variance,
whereas the UKF performance is almost indistinguishable
from the true trajectory.

Consistent with the analysis of the aircraft problem present in
the paper [1], the figure 3 illustrates that the error covariance
of the EKF is much higher than that of the UKEF, further,
the error covariance of the constant term x5 never decreases
leading to a poor and biased estimate of the constant vehicle
parameter xs.

The code files to generate these results can be found under
code/vehicle. Specifically the main_vehicle.m file.

Conclusions

From the aircraft tracking problem, we can conclude that,
in the presence of many layers of non-linearity, The UKF can
track the state of the vehicle quite well.

VI. EFFECT OF EXTENT OF NON-LINEARITY

In this section we perform some new experiments to explore

* theeffect of increasing the extent of non-linearity in a model.
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Figure 2: Tracking the states - x1 and z3 by EKF (top 2 cells)
and UKF (bottom 2 cells). For a clearer picture please see
images under results folder
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+—additive and is instead proportional to the magnitude of the
state being considered.

This noise model is quite realistic for measurement processes

since errors are often specified as a percentage of the measured

quantity, and this exactly fits into the model considered in (22).

Further the formulation of the EKF and UKF quite naturally

extends to non-additive noise.

The MATLAB tool-box has a method of specifying non-linear
noise.
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Figure 3: Collated plots for error variance values over time

In figure 2 we see that the UKF does a much better job of
following the ground truth state of the vehicle. The EKF ap-
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Figure 4: Tracking of the 2 states by the EKF and UKF, we
have state x; above and state zo below




mseinx,

mseinx,
T

Figure 5: Mean squared error in estimating the 2 states, x
above and x5 below. Please see results folder for clearer
picture

The non-linearity in this model is not much and we see
that both EKF and UKF have almost identical performance.
This can be seen from both the tracking over time in figure 4
and from the mean-squared error in state estimation over time
figure 5.

Modified VDP Oscillator

Next, to push the ability of the estimators, consider a modified
model with an additional term dependent on x5 (k) added to
measurement process.

r1(k) = z2(k) (23)
wa(k) = (1 — 23 (k)2 (k) — 21 (k) (24)
y(k) = 21(k)(1 + v[k]) + sin(w2(k)) (25)

When the same experiments as the usual vdp oscillator are
applied to this model, we get the results as shown in figure 6
and 7

VII. CONCLUSIONS

From these analytical experiments we see that, the ability of
the EKF in handling non-linearity is quite limited. Whenever
there are non polynomial terms in either the state transition
function or the measurement functions they will have an
infinite Taylor series expansion. Often, it is a grossly poor
approximation to arbitrarily terminate this expansion at the
linear level. The poor approximation leads to poor results.
Likewise, the performance of the UKF also suffers and it
is not able to accurately track the state trajectory. But the
performance is still far superior to the EKF.

One of the ways in which this superiority can be seen is that
the EKF has a jittery and peaky filter output whereas the UKF
has a smooth output although it does not track the state exactly.
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Figure 6: Tracking of the 2 states
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Figure 7: Mean squared error in estimating the 2 states



