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A well known obstacle to partially observable Markov decision process (POMDP)
planning is the curse of history. The term refers to the problem that the optimal
action in the current time step depends on the agents entire history which is
exponential in the time horizon. To tackle the curse of history, the authors pro-
pose a new approximate POMDP planning approach called Point-Based Value
Iteration (PBVI).

POMDP planning and Exhaustive Enumeration
A POMDP can be fully described by the tuple (S,A,O, bo, T,Ω, R, γ), where S
is a finite set of states, A is a set of discrete actions and O is the finite set of
observations an agent can receive. T provides us with the transition function
T (s, a, s′), bo is the initial belief state and Ω(o, s, a) is the distribution describing
the probability of observing o given the action a taken by the agent and the
next state s reached by the agent. R(s, a) is the usual reward signal and γ is
the discount factor. Since the state is only partially observable, at every time
step t the agent computes a belief state vector bt(s

′).
The goal of POMDP planning then is to take the optimal action a for every belief
state bt that it encounters during its lifetime. The POMDP planning problem
can be solved using exact value iteration (VI) by exhaustively enumerating all
possible value functions at every time step. In particular, we use the notation
Vn = {α0, α1, . . . , αm} to denote the solution set for the optimal value function
after n iterations. Here, in the terminology of the previous reading [R12 - Kael-
bling et al.] each α-vector represents a certain policy tree in the policy space
and the optimal value function Vn(b) is given by Vn(b) = maxα∈Vn

α · b. The
simplest procedure to obtain the set Vn is then to build a superset of potential
α values by building upon the (assumed to be minimal) set Vn−1. Subsequently
this superset is pruned to remove any values that may lie entirely below a com-
bination of other α vectors.
The problem with this approach is that in the worst case, the run time is order-
wise equal to |S|2|A||Vn−1||O| which is exponential in the size of the observation
space. This is quite undesirable, the authors use this drawback as their motiva-
tion for PBVI - an approximate solution method.



Point-Based Value Iteration (PBVI)
The underlying philosophy for this method is that planning equally for all belief
states within the belief simplex is unnecessary, instead the focus should be on
getting away with planning for as few representative belief points as possible.
The proposed PBVI algorithm solves the POMDP by planning for a finite set
of belief points B = {bo, b1, . . . , bq}. This way only the optimal α-vectors cor-
responding to elements in B need to be optimized for during value iteration.
Solving the problem in such an approximate manner makes POMDP planning
tractable even for problems with larger, more complex states-spaces, since the
run time is now polynomial and given by |S||A||Vn−1||O||B|.
To deliver quick results initially and improve its accuracy over time, PBVI per-
forms belief set expansions at the end of every outer iteration. The performance
of PBVI is completely dependent on the choice of belief set B. Keeping this in
mind, the authors propose and compare four strategies for belief set expansion,

1. Random (RA) - New belief points are sampled from a uniform distribution
over the entire belief simplex.

2. Stochastic simulation (SS) with random action (SSRA) - In all the SS
based strategies, a single step forward of the trajectory is stochastically
simulated to produce new belief states {ba0 , ba1 , . . .} i.e. a new b for every
action. Under the SSRA scheme one of these actions is randomly selected.

3. SS with greedy action (SSGA) - The action selected and simulated is the
one which is greedy with respect to our most recent estimate of the value
function. The new belief state b′ obtained in this manner is appended to
the set B.

4. SS with explorative action (SSEA) performs one step simulations corre-
sponding to all possible actions to generate the belief states {ba0 , ba1 , . . .}.
Among these, it keeps the new belief state bai that is farthest away from
any point already in B.

PBVI error and experimental validation
Based on performance comparisons on various problem domains, the authors
select SSEA as their belief set expansion method. Subsequently they prove a
bound on the error created by the PBVI approximation - ||V Bn − V ∗n ||∞ for this
scheme. Overall their PBVI solution proves to be quite effective on the Tag,
Hallway and Maze33 domains out performing the QMDP baseline on all three
after a reasonable computation time. Due to exact solutions being intractable
on all but the simplest of POMDPs, efficient and provably accurate approximate
planning is crucial. This work by Pineau and others is a big leap in this regard.

A question I have is -

• Why does the QMDP approximation work well on numerous POMDP
domains? It seemed to me like some strong regularity conditions on the
POMDP would be needed to make this claim in general.
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