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In the usual Markov Decision Process (MDP) setting the goal of an agent
is to maximize the sum of discounted rewards over its lifetime. However, when
trying to design an agent that can outperform an opponent in a timed zero-sum
game, we must take a different view of the problem. An optimal agent for a
zero-sum game maximizes its probability of winning. To win, the only require-
ment is that the agent scores more points than its opponent. To capture this
objective, the paper by McMillen and Veloso sets up the threshold-rewards
(TR) problem. Under this setup, rather than maximizing cumulative dis-
counted reward over some fixed number of time steps (h), the agent’s goal is to
maximize rtrue = f(rintermediate). Here rtrue is the objective that is maximized
by the optimal policy π∗

TR, f is a function called the threshold rewards objective
and rintermediate is the usual cumulative reward over agent lifetime.

An interesting contrast between π∗
TR in the TR setup and the optimal policy

under the usual maximizing expected reward (MER) setup is that, π∗
TR

is in general non-stationary. To illustrate this, the paper considers a simpli-
fied robot soccer setup with each time step being associated with one of three
states - FOR (Agent scores: ∆rintermediate = 1), AGAINST (Opponent scores:
∆rintermediate = −1) and NONE (Neither score: ∆rintermediate = 0). Further
at each time step, the agent’s soccer team as a whole can decide to play in one
of three formations - balanced, offensive or defensive. These three formations
are interpreted as the possible actions that the agent can take. Each of these
actions has a fixed pre-specified probability associated with transitioning to one
of the three game states described earlier. For certain instances of transition
probabilities, the MER scheme would lead to a policy that always plays the
balanced action. However, this scheme will come with a high loss probability.
Under the TR framework the optimal policy increases its chances of winning by
alternating between the offensive, defensive and balanced actions.

To obtain this non-stationary optimal policy using well known MDP plan-
ning algorithms, the paper synthesizes an associated MDP in such a way that
the optimal policy on it would be π∗

TR. In simplified terms they do this by incor-
porating the time index t ∈ {1, . . . , h} and the intermediate reward rintermediate

into the state of this new MDP (M
′
). It is fascinating to note here that, even

on M
′
, planning for π∗

TR using value-iteration has a run-time that is polynomial
in the MDP parameters. On deploying this approach onto the simplified robot-



soccer problem, the agent learns a policy that is more aggressive in its decisions
as the game reaches its end. On comparing the performances of the agents, the
paper finds that the TR agent is able to win with high probability even against
a non-adaptive opponent that is a better scorer.

Even though value-iteration takes at most polynomial time on the prob-
lem, a large sized state-space in the original MDP could prove to a significant
bottle-neck to planning. To overcome this, the paper proposes some heuristics
that decrease the number of times a non-stationary policy is updated, thereby
decreasing the state-space of M

′
. The first is uniform-k where the policy is

adapted only every k time steps. The next is lazy-k where the policy is not
adapted until the last k time steps. Lastly, there is the logarithmic-k-m heuris-
tic that is a hybrid approach between the other two. Empirically, it is observed
that the lazy-k heuristic performed the best on the robot soccer problem.

A question I have is -

• As the paper points out, a drawback of the present TR model is that it
does not consider that the agent may be adaptive. I was wondering if a
convergent non-stationary policy would give us any real advantage over an
adversary/opponent that was adaptive, since the opponent could change
their policy to counter ours.
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