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A popular view taken in Reinforcement Learning (RL) and Multi Armed
Bandit (MAB) problems is one of continuing exploration and exploitation through-
out the agents lifetime. Under this view, the agent learns to take better actions
to maximize its expected return over a potentially infinite horizon. This seminal
paper by Even-Dar and others takes a new view of the problem by introducing
the probably approximately correct (PAC) framework for MABs and Markov
Decision Processes (MDPs).

Under the PAC framework, the agent explores its environment for a finite
horizon and at the end, produces a policy π that is ε-optimal with high prob-
ability. More precisely, an algorithm is called PAC-RL if for input parameters
ε, δ and any Markov Decision Process (MDP) {S,A, T,R, γ}, on halting the
algorithm outputs a policy π such that

P(||V ∗ − V π||∞ < ε) > 1− δ

A major emphasis on the paper is on applying the PAC framework to MAB
problems. Unlike the full-RL problem, under the MAB setting a PAC-optimal
algorithm would simply output an ε-optimal arm on its termination. The pa-
per describes numerous approaches to the PAC-MAB problem starting with a
“naive” algorithm that simply samples each arm a fixed number - m times and,
at the end, outputs the arm with the highest empirical mean. As is intuitive, the
required number of pulls m here is a function of the constraints ε, δ and can be
computed using an application of Hoeffding’s inequality. The problem with this
naive method is that the total required number of pulls is O( nε2 log(nδ )) which
can be improved upon as is seen through the subsequently presented algorithms.

Next the paper discusses an algorithm called Successive Elimination (SE).
The algorithm starts with the assumption that the sub-optimality gaps ∆i’s
are known (However their mappings to arms are unknown). In this approach,
sampling is performed in slots. In each slot, arms are sampled a fixed number
of times and at the end of the slot, the arm with the lowest empirical mean,
up till the latest time step, is eliminated. If the largest sub-optimality gap
corresponding to the worst arm were ∆n, then each arm would be pulled at
least 1

∆2
n

log(nδ ) times, after which the empirically worst arm would be elim-

inated. Going forward, in the ith phase, the surviving n − i arms are each



sampled
(

1
∆2

n−i
− 1

∆2
n−i+1

)
log(nδ ) assuming that the sub-optimality gaps are

indexed in their ascending sequence. Adding up the number of pulls required
over all the slots we find that this algorithm also has an O(n log(nδ )) sample
complexity. Subsequently the paper introduces an extension of SE where the
knowledge of the sub-optimality gaps is not assumed. The authors show that
in the modified scheme, the required sample complexity is order-wise the same
as the scheme which assumes knowledge of ∆i’s. Under SE we get the same
order wise complexity as the naive scheme. However, the advantage with SE is
that the algorithm outputs the best arm with probability δ instead of just an
ε-optimal arm.

The last PAC-MAB algorithm discussed in the paper is median-elimination
(ME). Under this scheme, the algorithm throws out the worst half of the arms
at each time step. Using this smarter algorithm, the authors are able to show
an improved order-wise complexity of O( nε2 log( 1

δ ))

A question I have is -

• No matter what PAC algorithm we use for the MAB problem, in expecta-
tion we would get linear cumulative regret (albeit with a very small slope).
So is the practical usage of the PAC-MDP framework limited to the best
arm identification problem?
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