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Under the Markov Decision Process (MDP) model of agent-environment
interaction, there is a reward function R(s, a, s,) that tells us the one-step re-
turn associated with each state transition s → s, under a certain action a. In
problems where we wish to understand animal and human learning, the optimal
(desirable) behaviour exhibited by the agent is known (in the form of an optimal
policy π∗) but the underlying reward function being optimized for is unknown.
Solving such problems comes under the ambit of inverse reinforcement learning
(IRL). The seminal paper by Ng and Russel introduces the IRL problem and
provides algorithms to solve IRL under three situations, which are -

• A tabular representation is available and the policy π∗ is known

• The MDPs state space is continuous and the policy π∗ is known

• The policy π∗ is available only through a finite set of observed trajectories

First the authors characterize possible solutions for reward functions under
the case when a tabular representation is available. Given an MDP with a
finite state space S, a set of k actions A = {a1, . . . , ak}, transition probabilities
{Psa}, a discount factor γ and with the optimal policy π as known. We wish
to characterize the possible reward functions R. For notational simplicity, the
paper takes π(s) ≡ a1. The criteria derived in the paper is

(Pa1
− Pa)(I − γPa1)−1R � 0

Here Pa1 and Pa are state transition probabilities under actions a1 and a 6= a1
respectively and the reward function R has been written as a vector for nota-
tional compactness. The authors show that this characterization of R captures
all the solutions to the IRL problem, however many of the solutions character-
ized by the above criteria are uninformative. In particular, R being any constant
vector is a solution. To filter out these degenerate answers, the authors add an
additional heuristic that favours solutions which maximize the single step devi-
ations from the optimal policy π. The motivation being that π become the clear
choice for the optimal policy under reward scheme R. At the end of the section,
the paper provides a Linear Programming (LP) formulation to determine R.



Next, the authors move onto to the IRL problem under infinite state spaces.
In particular they consider the case of S = Rn. In this situation reward func-
tions are mappings Rn → R and the most general solution to the IRL problem
would require variational calculus. The paper points out that this approach is
algorithmically problematic. In view of this, the authors assumes R to be a
linear combination of some basis functions φi’s derived from the family of basis
functions {φi}d1. That is, they assume R(s) = α1φ1(s) + . . . + αdφd(s). Un-
der this scheme, the authors provide a criteria on R and an LP formulation to
obtain desirable R’s analogous to the tabular case.

Lastly, the authors provide a solution to the IRL problem when only sampled
trajectories are available. This situation is quite a practical one since it is often
the case that we do not have access to an explicit environment model in the
form of an MDP, and that policies are not available as state-action mappings
but merely as trajectories. Just like the previous case of continuous state-space
representation, even here R(s) is assumed to be a linear combination of basis
functions {φi}d1. The algorithm assumes the ability to simulate trajectories and
compute their returns, and proceeds in two phases. First, the return of each
basis function φi is estimated empirically using roll-outs. In the next stage of
the algorithm, appropriate weights αi for the basis functions are computed by
solving an LP. To do this, an objective analogous to the last two cases is for-
mulated and solved. The objective uses a set of trajectories {π1 . . . πk}, and
on every iteration expands the set of reference policies to include the policy
optimal under the most recently computed reward scheme R. The process of
solving Linear Programs to determine new reward schemes continues until we
are satisfied by the optimal policy being close enough to the desired π.

Some questions I have are -

• It is not clear to me how the optimization problems presented in the
paper is an LP formulation sine the objective involves cascaded max-min
operators.

• I could not understand the transformation of the necessary conditions on
R from the tabular to the infinite state space case.
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