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1. Introduction

Making learning tractable in a reasonable computation time
is one of the challenges of Reinforcement Learning. A
good learning agent is characterised by its ability to learn a
near optimal policy without extensive exploration. However
sparse rewards from the external environment make learning
a challenge and careful design of additional shaping rewards
becomes a practical necessity.

In our project we explore two methods of designing the
reward schemes of learning agents that are present in the
literature, namely - Optimal Reward Search and Reward
Shaping. We apply these two approaches to hasten the
learning of a near optimal policy by our agent in a novel
Grid World Setting called the Balanced Diet Problem.
Through experimentation described in our report we find
that it is indeed possible to design additive and potential like
Shaping Reward functions that match the performance of
an Optimal Reward Search.

2. Related Work

While designing an intelligent agent, an agent designer has
certain expectations from the agent’s behaviour. These
broader design objectives can be modeled as an extrinsic
reward function. The qualifier extrinsic is appropriate since
these rewards are obtained from the agents environment.
For a majority of tasks, this extrinsic reward function is too
sparse for the learning of an optimal policy to be tractable
in a reasonable number of iterations. To overcome this prob-
lem, multiple solutions have been proposed in the literature.
Two of these solutions are Optimal Reward Search (Singh
et al., 2009) and Policy Invariant Reward Shaping (Ng et al.,
1999).

The Optimal Reward Search framework performs a search
for an optimal intrinsic reward function over the space of all
possible reward functions. Here the optimal reward function,
as defined in (Singh et al., 2009) is the one that maximizes
the expected extrinsic reward thereby complying with the
objectives of the designer.

Reward Shaping, on the other hand, is a method in which
a shaping function is added to the sparse extrinsic reward
function and the new reward scheme is used to train the

learning agent.

We employ these frameworks for training an agent to maxi-
mize its fitness (a kind of extrinsic reward) in the Balanced
diet setup described in detail under section 3

3. The Balanced Diet Problem

The balanced diet setup consists of a grid-world of dimen-
sions 6 x 6 with two kinds of food sources - Fat and Protein
- available for consumption by an agent residing in it. The
action space of the agent consists of five possible actions ly-
ing in A ={up, down, right, left, eat}. The first four actions
make the agent move in the specified direction whenever
possible and remain in place when blocked by a boundary.
The eat action allows the agent to consume food when it is
on a food source square.

By consuming any of the two food groups, the agent moves
into a state where it is satiated with respect to that food
group. When the agent is satiated with respect to both the
food groups, we say that its diet is balanced.

Under the problem setup, the sparse extrinsic reward for
the agent is an incremental fitness. The agents environment
confers much larger fitness levels for a balanced diet as
compared to an unbalanced diet consisting of a single food
group.

Quantitatively speaking, for every time step that the agent
is satiated in a single food group, its fitness level is incre-
mented by 0.01 and for every step when it is satiated in
both food groups, its fitness level is incremented by 1.0. In
case the agent is not satiated in either of the food groups, its
cumulative fitness level remains unchanged.

After entering a satiated state in a certain food group, the
agent becomes un-satiated with respect to the food group
with probability 0.1 in every subsequent time step. This
transition happens independent of its state with respect to
the other food group and aslo independent of it’s position.
The task is modelled as a continuing task with a discount
factor of v = 0.99. Across all runs, food sources in the grid
are located at diagonally opposite corners and the agent is
always born in the 6! row and 6" column. See figure 1 for
a visualization.

Given the parameters specific to this setup, to maximize
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its cumulative fitness, the optimal policy for the agent is
to alternate between the fat and protein food sources. To
make the agent learn such a policy, we use Q-learning cou-
pled with e-greedy exploration as our control algorithm of
choice.
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Figure 1. The Balanced Diet Problem

4. Reward scheme strategies for learning
4.1. Optimal Reward Search

As described briefly in section 1, reward search performs
an exhaustive search over a reward space under some rea-
sonable constraints on the reward function. The optimal
reward scheme is said to be the scheme that leads to the
highest expected cumulative fitness (extrinsic reward) for a
fixed finite horizon, when the agent learns under it.

We define the hunger state of the agent to be s = 00 if
it is un-satiated in both food groups, s = 01/s = 10 if it
satiated in only fat/protein and s = 11 if it is satiated in both
food groups. In our experiments we only consider reward
functions which reward the agent based solely on the hunger
state it transitions to.

Hence on taking any action, if the agent moves to a Hunger
state s, then the agent can receive one of four possible re-
wards given by

700 if s =00
01 = T10 ifs=0lors=10

T11 if s =11

R(s) =

To compare the results of learning under the optimal reward
scheme learned using reward search, we use the incremental
fitness levels as the baseline reward function. That is, we
use,

0 if s =00
Rpase(s) =1 0.01 ifs=01lors=10
1.0 ifs=11

Under our scheme the reward space is three dimensional, so
to search for the optimal reward scheme we must discretize

the parameters {rqg, 701,711} in a range of choice which
we take to be [—1, 1].

Precisely, we discretize ro; over the range [—1, 1] with a
step size of 0.2. However for r1; and o9 we use slightly
modified schemes for efficiency.

For r1; we use the range [0, 1] since it is easy to see that a
negative reward for consuming a balanced diet is guaranteed
to be sub-optimal.

For rgg we use the search space,

roo € {—1,-0.5,—0.25,0,0.01,0.02}

This is a coarser and in-exhaustive search space. The coarse-
ness of the search space is justified since, a low satiatedness
decay probability of 0.1 means that the number of time steps
spent in s = 00 are quite few. The maximum value of 0.02
is chosen based on the intuition that rewarding a completely
un-satiated state by a positive reward larger than 0.02 is
likely to be sub-optimal.

In addition to the above discretization, we also simulate the
results for the baseline Rpqse($).

RESULTS FROM REWARD SEARCH

Based on the above choice of discretization, the size of the
search space R becomes |R| = 330. Within R we define
a subclass which we call Fitness Based Rewards, a term
taken from (Singh et al., 2009). Fitness Based Rewards are
further constrained in that they can only assign non-negative
rewards to events that increment fitness and zero rewards to
all other events. We would like to point out that the baseline
reward function Rp,s.(s) also lies in this subclass.

The cumulative fitness of the agent for a horizon of
75,000 time steps was calculated for each reward scheme
R(s) € R after averaging over a total of 10 runs. These
results have been plotted in figure 2.

From figure 2 we see that the optimal reward function
R*(s) performs significantly better than the baseline re-
ward scheme in terms of cumulative fitness. An interesting
observation from figure 8 is that the Best-Fitness based re-
ward seems to coincide with the Baseline reward scheme,
the reasons for this are discussed later in this section. The
optimal reward scheme in R is given by,

—0.25 ifs=00
R*(s) =¢—-0.2 ifs=0lors=10
1.0 if s =11

CHARACTERISTICS OF A GOOD REWARD SCHEME

Being satiated in a single food group is an event that
increments fitness, despite this, the optimal reward function
R*(s) reveals that associating a negative reward with an
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Fitness Growth for Reward schemes
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Figure 2. Comparison of the learning rate across reward schemes

unbalanced diet is desirable. The reason for this is explored
further through figure 3

Relation between fitness and unbalanced diet penalty
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Figure 3. Reward schemes and their Relative Penalties

In figure 3, we plot relative penalty on the horizontal axis.

Here relative penalty is defined as r1; — o1, that is the
difference in the reward for transitioning to a balanced state
vs. consuming a single food group. From the figure 3 we
see that reward schemes which have a large positive relative
penalty tend to perform better than other schemes.

Under fitness based rewards, we assign only non-negative
rewards to fitness increasing events. Although, a fitness

based scheme seems like a natural choice for a good reward
scheme, it means that the maximum relative penalty can be
r11 — ro1 = 1.0 — 0.0 = 1.0, However, we must be able to
move to larger relative penalty values if we wish to improve
cumulative fitness as can be seen from figure 3 and the fact
that the optimal reward scheme has a relative penalty of 1.2.
So, under constraints imposed on reward schemes R(s) €
R, the notion of a good reward scheme can be understood as
one which penalises the agent for consuming an unbalanced
diet up to a point. Beyond this, a greater relative penalty
begins to harm the agent. This happens since the agent
learns to put too much emphasis on not being in hunger
states 01 and 10 which in turn jeopardizes its ability to
transition to hunger state 11.

Lastly it is interesting to note that the optimal reward scheme
makes the agent spend a much greater fraction of time in a
hungry state of 00 then the baseline. This is seen through
figure 4 that plots the fraction of time the agent is un-satiated
on both food groups vs. the reward 7¢; .

Fraction of time spent Hungry as a function of reward scheme
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Figure 4. Fraction of time spent completely hungry

POLICIES LEARNED

Here we visually present the policy being followed by the
agent at the end of a particular run. We plot the best action
found using Q-learning in 3 different hunger states of 00, 01
and 11. The case of 10 is analogous to that of 01. For the
state 00, we can see that the optimal action tends to take it
to the nearest food source, which is what one should expect
it to learn. There are some obvious errors in some cells, and
we attribute this to insufficient exploration in those states
(since the optimal policy does not include those states).
Also note that the agent eats at both the protein source’s
location and that of the fat source, as it should.
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For the state 01, we see that the agent at most points is
trying to go towards the fat source, as it should. The
mistakes are again due to insufficient exploration along
non-optimal paths. Notice that it doesn’t eat at the protein
source, which makes sense since it gains nothing by eating
protein if it is already satiated in protein.

For the state 11, we see that there is no obvious pattern in
what the agent does. It tries to seek out a balance between
staying close to both food sources(in the middle of the grid)
and close to one food source in case it loses that first.
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Figure 5. Policy being followed when s = 00
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Figure 6. Policy being followed when satiated only in fat: s = 01
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Figure 7. Policy being followed when s = 11

4.2. Reward Shaping

The second part of our project was based on the approach
given by (Ng et al., 1999). In this paper the authors introduce
the notion of potential functions for reward shaping, which
are rewards for transition between states that are expressible
as the difference of some arbitrary potential function applied
to those states.

The basic idea is that for the MDP M = (S,A,T,R,7), we
”shape” the reward functions in a way that guides the learn-
ing algorithm to an optimal policy faster. Formally, we
tweak R to R’ where R’ = R+ F' and run our learning algo-
rithm on this modified MDP. Here, FF : S x A x S — R is
a bounded real valued function called the shaping function.
Using expert knowledge of the environment, we can design
an F that enables faster learning.

The essence of this paper is in the type of shaping functions
they introduce. A shaping function F'is called a potential-
based shaping function if there exists a function ¢ : S — R
such that for all non-terminal states s € S,a € A, s’ € S,

F(sva’ sl) = ’Y¢(3/) - ¢(S)

In (Ng et al., 1999), the authors show that the above is a
necessary and sufficient condition for policy invariance,
meaning that any other family of shaping functions can lead
to sub-optimal policies in the original MDP becoming opti-
mal under the modified MDP. Further, it also means that for
a control algorithm such as Q-learning any potential based
shaping will converge to a policy that is optimal under both
search and shaping.

The theorem advocates that we look for potential functions
of the form F'(s, a, s') = y¢(s’) — ¢(s) using expert knowl-
edge of the environment of the MDP. One example would be
to reward the agent for going to "good” states, and penalis-
ing it for going to "bad” states. If this is to be modelled, the
¢(s) can be kept positive for the good states and negative
for the bad ones.

Another interesting idea derived from the paper is using
¢(s) = Vs * (s), that is keeping the values equal to an
estimate of the optimal value functions. This estimate is
based on our understanding of the expected return from an
MDP starting from a certain state. We try both these ap-
proaches on the Balanced Diet problem and have compiled
the specifics and the results in this section.

VALUE FUNCTION ESTIMATION

Our first attempt was to guess a potential function based on
a crude estimate of the value function of each state. Rather
than guessing the value function, we tried to guess another
quantity, namely the expected number of steps needed to
reach full satiation. Since a higher expected number steps
suggests a lower value function, we use the negative of this
quantity as a substitute for the value function, and use a
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potential based reward scheme based on this.

Since this quantity is hard to compute in closed form,
we further simplified it to computing a quantity that we
call ’steps to satiation assuming no decay’. For each
state (grid-position, hunger state), we define the quanti-
ties d; =Manhattan distance of protein source from current
position and de =Manhattan distance of fat source from cur-
rent position. We further define d,,.. =Manhattan distance
between the two food sources. Let 0 correspond to the agent
being hungry in both sources, 1 to satiated in fat only, 2 to
satiation in protein only and 3 correspond to full satiation.
We define ¢ as:

dST‘C
IP(No decay in dg. steps)

@(pos,0) = —min(dy,ds) —

d;

IP(No decay in d; steps)
da

No decay in ds steps)

¢(pos, 1) = —

8(pos,2) = ~ ¢
¢(pos,3) =0

NOTION OF GOOD STATES

Our second attempt was to categorise the states of the MDP
as good or bad based on their position on the grid, irrespec-
tive of the satiation state in the positions. By doing this,
we wanted to encourage the agent to take a particular path
on the grid, and thus converge to an optimal policy faster.
This was achieved by encouraging the agent to move along
the diagonal so that it does not need to wander around and
can learn an optimal with limited exploration. The potential
function we used for this is as follows (same for all hunger
states):

r, ifx 4y € [my,me]Vae{0,1,2,3}
0, otherwise

d)diag(x’y»a) = {

By constraining x+y between two values, we make sure that
the agent learns to stay in some diagonal patch along the
diagonal, which indeed corresponds to an optimal path from
a balanced diet viewpoint.

By using this shaping function, we narrow down the agents
search to one of the optimal paths, rather than learning
several optimal paths and converging to one among them
via random events. For this setup, we tried various values
of m1, mo and r and their differences are highlighted in the
graphs below.

Another idea we had along similar lines was forcing the
agent to stick to a couple of edges of the grid since we
aren’t allowing diagonal movements. Similar to the above
scheme, this also narrows down the optimal paths available
to the agent and learning should improve with this potential

function as well. Formally, we set:

r, ifz=0Vae€{0,1,2,3}
Gedge(X,y,a) =, ify=0Vae€ {0,1,2,3}
0, otherwise

The results for all of these as well as the value function
estimation approach are depicted below.

SHAPING RESULTS

We have simulated 4 different shaping methodologies based
on the ideas discussed above. For each of these, the cumu-
lative fitness of the agent was computed over a horizon of
125,000 time steps. The graphs have been averaged across
10 such random runs.

e Baseline: The learning curve with no shaping, only
the rewards given by the environment.

e Value Based Potential: Here, we have used the poten-
tial function (based on both the position and state) as
described in section 4.2.1

e Broad Diagonal Potential: Here, we have used the
function ¢g;qq With my = 4, mo = 6 and r = 10. We
have scaled the rewards (while learning) appropriately
to keep the range of rewards that the agent receives
same in all cases.

e Thin Diagonal Potential: This uses the function
@diag With mq = 5, mo = 6 and r = 10. Again,
scaling has been done appropriately.

o Edge Potential: The function ¢.44. has been used
here with » = 10. All rewards have been scaled.

e Optimal Reward Search: This refers to the best re-
ward search scheme from section 4.1, included to en-
able learning comparison between shaping and search-
ing.

As can be seen from figure 8, certain versions of shaping
outperform not just the baseline but also the optimal reward
search scheme. This is expected in general because during
reward search we are allowing only 4 degrees of freedom
(the rewards corresponding to the 4 satiation states) while
in shaping we have allowed potential functions based on
position as well as state. However, the interesting thing
to note is that while we had no hand in how search was
done, the shaping scheme was entirely our own creation
based on an accurate understanding of the environment.
As for the value based potential not performing as well as
the baseline, we attribute it to a poor guess of the value
function. Moreover, the idea that expected number of time
to reach full satiation may not accurately represent the value
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Fitness growth for reward shaping
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Figure 8. Comparison of the learning rate across different schemes

function for the MDP. We believe better estimates of the
value function should in fact make learning of an optimal
policy faster.

5. Shaping v/s Searching

Structurally, the two ideas are very different and we believe
it is not appropriate to compare the results of the two ap-
proaches directly. If reward search is done on the entire
reward space then it is bound to give better results than any
shaping policy, simply because it is designed to obtain the
global optimal over the search space of reward functions:
‘R. However, the computational expense in performing such
a search would be immense. On appropriately reducing the
search space (as we did by limiting it to only the hunger
states irrespective of position) we can get convergence rates
substantially faster than the baseline.

Shaping, on the other hand, is a much more intuitive ap-
proach where we guide the agent based on our understand-
ing of the environment. The shaping functions can be as
detailed as we want, and generally the computational ex-
pense corresponding to an intuitive potential function is
minimal. If our guiding policies are correct, the agent in-
deed does outperform the baseline learning rates as can be
seen from the graphs.

At the same time, shaping also provides a theoretical ad-
vantage in the sense that it guarantees convergence to an
optimal policy in the limit, irrespective of the choice of the
potential function. However, this approach is limited by our
knowledge of the environment. In case we know little about
the environment and/or are unable to formulate ”good” guid-
ing principles, the result is often worse than one without
shaping.

6. Robustness of Shaping

We know that reward shaping is based on the designer’s
knowledge of the environment which is passed on the agent
in the form of shaping functions. As is expected, when this
knowledge is flawed, the shaping functions are of little help.
To demonstrate this, we changed the environment a little
bit and assumed that the designer is unaware of this modi-
fication and thus doesn’t change the shaping functions. By
running the shaping schemes in this modified environment,
we show that the same schemes that worked in the Balanced
Diet problem don’t improve learning rates in the modified
setting.

" Q@

..\\ — E’Aﬁ

Figure 9. Modified Environment

Modification: In order to come up with an environment
where the thin diagonal potential and broad
diagonal potential will not speed up learning, we
added some hard boundaries in the middle of the grid. These
boundaries are similar to walls in that the agent can’t cross
them.

Also, we modified the environment such that the agent is
given additional rewards for walking along the edges of the
grid, which we think will make the policy of sticking to
the diagonals sub-optimal. As shown in figure 9, the cross
represents hard boundaries and the blue portion represents
regions of additional rewards (for just being there). Specific
parameters for this scheme can be found in the appendix.
In this modified setting, we run the same potential functions
along with the baseline to obtain some plots, as shown in
figure 10. Since the rewards have been modified and are no
longer in the same range as the original problem, the scale
on the y-axis isn’t comparable to the original environment.

Observations: As is apparent from figure 10, the potential
functions designed for the Balanced Diet problem don’t im-
prove learning if the environment has been modified. This
solidifies the need of proper understanding of the environ-
ment when using potential based reward schemes and con-
firms that shaping (in terms of learning speed improvement)
is certainly not robust to changes in the environment.
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Fitness growth for reward shaping
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7. Conclusion

We have described a novel Balanced Diet problem and have
discussed the implications of reward search and reward
shaping in this MDP. We started with an analysis of reward
search in this environment. Because of the heavy compu-
tational resources needed for exhaustive reward search, we
restrict our search space to rewards based on hunger states
only. Within this search space, we find an optimal reward
scheme and characterise the policy obtained by the learning
algorithm (Q-learning) when using this reward scheme. We
discuss traits of a good reward scheme and examine why
the optimal reward scheme found using reward search acts
like one.

We then take a step towards reward shaping and provide
details about how shaping functions work mathematically.
We discuss qualities of a good shaping function and high-
light methods of guessing potential based shaping functions.
Next we take two different routes for guessing good shap-
ing functions in our Balanced Diet problem, value func-
tion based potentials and potentials based on ”goodness” of
states. We run Q-learning using all these reward functions,
and show that reward shaping does much better than the
baseline when we guide the agent(via shaping functions)
appropriately.

Finally, we scrutinise the robustness of shaping policies,
and discover that there exist variations of the environment
that if unknown to the designer may result in poor shap-
ing functions. This shows the importance of environment
knowledge when designing shaping functions.

Further work can include increasing the reward search space
over positions on the grid as well as the hunger state in
searching schemes.

For shaping policies, coming up with a better estimate for
the optimal value function is also worth investigating, since
our estimate yielded sub-par results. We believe better es-

timates of the quantity ’expected number of steps to full
satiation’ may be a good estimate, which can be computed
using MDP knowledge by keeping track of position and
state along any shortest path between the two food sources.

References

Ng, A. Y., Harada, D., and Russell, S. J. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Proceedings of the Sixteenth Inter-
national Conference on Machine Learning, ICML ’99.
Morgan Kaufmann Publishers Inc., 1999.

Singh, S., Lewis, R. L., and Barto, A. G. Where do rewards
come from? In Proceedings of the Annual Conference of
the Cognitive Science Society, 2009.

Singh, S. P,, Lewis, R. L., Barto, A. G., and Sorg, J. Intrinsi-
cally motivated reinforcement learning: An evolutionary
perspective. IEEE Trans. Autonomous Mental Develop-
ment.

Appendix

This appendix includes parameters used in our experiments
that are not explicitly mentioned in the main paper:
Under Q-learning we use:

e An exploration rate of the epsilon greedy scheme as
e=0.1

e A constant learning rate o = 0.5
Parameters used in the modified environment:

e Extra fitness increment for going along edges: 40

e The agent can’t move up from positions (2,2) and (3,2),
can’t go down from positions (2,3) and (3,3), can’t go
right from (2,2) and (3,2), and can’t go left from (2,3)
and (3,3). If it tries to it just stays there for another
iteration and is penalised 0.2 fitness points.

The codes used for running experiments can be found
in the github repo link https://github.com/
ishank—-juneja/reward-search-shaping


https://github.com/ishank-juneja/reward-search-shaping
https://github.com/ishank-juneja/reward-search-shaping

