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The Problem Setting

Source Monitoring 
Station

Time-Sensitive
High-Bandwidth 
Communication

Channels

System: A sensor node (the source) and a monitoring station

Aim: Communicate time-sensitive and high-bandwidth information between the sensor
and central monitoring station

Problem: Find a channel selection policy such that cumulative performance is maximized
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The Channel Selection Problem

Source Channel
Index

Monitoring 
Station

Channel
Success

The available bandwidth is partitioned into K frequency channels

Schedule channel kt among K available channels at every time step t

Channel either successful - 1 or unsuccessful - 0

Assume stationary channel statistics across T trials
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Scheduling Problem Formulation

Source Channel
Index

Monitoring 
Station

Channel
Success

Schedule in a manner that minimizes cumulative Age-of-Information

AoI - a(t) is the time elapsed since the most recent successful update

Multi-Armed Bandit (MAB) framework applicable

MAB policies applied and analysed in the work of [2]
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High Bandwidth - 5G Uses Shorter Waves

Link: Image Source

Next generation: Higher data rates, move to higher frequency band

5G will use the 30GHz - 300GHz (mmWave/EHF) band

New challenges arise: line-of-sight paths, attenuation

Line-of-sight affects all channels, attenuation is frequency selective [3]
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Performance of Channels is Correlated

Source Stochastic 
Latent State

Stochastic
Success/Reward 

Monitoring 
Station

Stochastic success (reward) of arm k is Yk(X)

Yk(X) is a known deterministic function of state X

X is a latent stochastic state with unknown distribution

Correlation model introduced in the work of [4]
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The Correlation Model

Source Stochastic 
Latent State

Correlated 
Channels 

Monitoring 
Station

Realized 
State

Realizations of X lie in alphabet {x1, x2, . . . , xn}
Realization dictates which channels would be successful if used

Successes across channels at a given time are correlated depending on the functions
Y1, Y2, . . . , YK
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Contributions of Work

Variants of the UCB and Thompson Sampling policies that account for correlation
analysed for the AoI regret metric

Lower bound on AoI regret of Ω(log T ) for certain problem instances

An upper bound on AoI regret for Correlated-UCB (CUCB) and Correlated-Thompson
Sampling

Simulations to compare the performance of UCB, Thompson Sampling and their
correlated variants
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Correlated Bandit Model Definitions

Construct a Correlated Bandit instance with K arms

Sample arm k - Obtain reward Yk(X), mean reward µk = EX [Yk(X)]

Sub-optimality gap: ∆k = µ∗ − µk

Definition (Expected pseudo reward and pseudo gap)

Pseudo reward for arm ` with respect to arm k is given by,

s`,k(r) = sup
x:Yk(x)=r

Y`(x).

Expected pseudo reward in turn is defined as,

φ`,k = EX [ s`,k(Yk(X)) ].

The pseudo gap is defined as ∆̃`,k∗ = µ∗ − φ`,k∗ .
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Correlated Bandit Model Definitions

If ∆̃`,k∗ > 0, then arm ` is non-competitive

Arm ` is competitive if ∆̃`,k∗ ≤ 0 and strictly competitive if the inequality is strict

C denotes the number of competitive arms excluding arm k∗.

Definition (Expected pseudo reward and pseudo gap)

Pseudo reward for arm ` with respect to arm k is given by,

s`,k(r) = sup
x:Yk(x)=r

Y`(x).

Expected pseudo reward in turn is defined as,

φ`,k = EX [ s`,k(Yk(X)) ].

The pseudo gap is defined as ∆̃`,k∗ = µ∗ − φ`,k∗ .
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Example 1: Correlated Bandit Model
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µ1 = 1× 0.2 = 0.2

µ2 = 1× 0.3 + 1× 0.3 = 0.6

µ3 = 1× 0.3 + 1× 0.2 = 0.5

µ4 = 1× 0.2 = 0.2

Arm 2 is optimal

Optimal arm k∗ = 2.

µ∗ = µ2 = 0.6
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Example 1: Correlated Bandit Model

0.2 0.5 0.8 1.0
0

1

Y 1
(X
)

0.2 0.5 0.8 1.0
0

1

Y 2
(X
)

x1 x2 x3 x4

0

1

Y 3
(X
)

x1 x2 x3 x4

0

1

Y 4
(X
)

Using Definition 1,

φ1,2 = 1× 0.4 = 0.4

φ2,2 = µ2 = 0.6

φ3,2 = 1× 0.4 + 1× 0.6 = 1.0

φ4,2 = 1× 0.4 = 0.4

Only competitive sub-optimal is
arm 3

For this example C = 1.
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Example 2: Correlated Bandit Model
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µ1 = 1× 0.1 = 0.1

µ2 = 1× 0.1 + 1× 0.1 = 0.2

µ3 = 1× 0.1 = 0.1

µ4 = 1× 0.5 + 1× 0.3 = 0.8

Arm 4 is optimal

Optimal arm k∗ = 4.

µ∗ = µ4 = 0.8
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Example 2: Correlated Bandit Model
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Using Definition 1,

φ1,4 = 1× 0.2 = 0.2

φ2,4 = 1× 0.2 = 0.2

φ3,4 = 1× 0.2 = 0.2

φ4,4 = µ4 = 0.8

No competitive sub-optimal arms

For this example C = 0.
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Age-of-Information (AoI) Definition

The current AoI is the time elapsed since the last successful update.
More formally,

Definition (Age-of-Information (AoI))

At the start of time slot t, let a(t) denote the AoI at the central monitoring station and let
u(t) denote the time index at which the recent most successful update was received by the
monitoring station. Then, a(t) = t− u(t). Alternatively,

a(t) =

{
1 if the update in t− 1 succeeds

a(t− 1) + 1 otherwise.
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AoI Regret Metric

Definition (Age-of-Information Regret (AoI Regret))

AoI regret for a policy ρ, over T slots is given by,

Rρ(T ) =

T∑
t=1

E[aρ(t)− a∗(t)] =

T∑
t=1

E[aρ(t)]−
T

µ∗
, (1)

where (1) follows from the expectation of a geometric random variable with parameter µ∗.

aρ(t) denotes the AoI in time slot t under policy ρ.

a∗(t) is the AoI under the optimal policy.
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AoI Regret Lower Bound - Policy Family

Lower Bound on AoI regret is derived for a certain α-consistent family of policies.

Definition (α-consistent policies [6])

Let ks denote the index of the channel scheduled in time-slot s. The index k∗ denotes the
index of the optimal channel. A scheduling policy is called α-consistent, for a constant
α ∈ (0, 1), if there exists an instance dependent constant M such that,

E
[ t∑
s=1

1{ks = k}
]
≤Mtα, ∀ k 6= k∗. (2)

Ishank Juneja - 16D070012 Correlated AoI Bandits November 23, 2020 11 / 29



AoI Regret Lower Bound

Theorem (Lower bound on AoI regret)

If a bandit instance I has at least one strictly competitive arm k with ∆̃k,k∗ < 0, then for any
α-consistent policy ρ, we have,

Rρ(T ) ≥ max
k∈C′

∆k

D(Pk, P
′
k)

(1− α) log T − log (4M)

µ∗
.

Otherwise, if ∆̃k,k∗ ≥ 0 ∀ k ∈ [K], Rρ(T ) ≥ 0.

D(Pk, P
′
k) is the KL divergence between the reward distribution of arm k and a suitably

chosen perturbed reward distribution

C′ is the set of strictly competitive arms

M is an instance dependent constant as in Definition 4
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Definitions Associated With CUCB

Let C denote the number of competitive sub-optimal arms and C denote the set of
competitive arms inclusive of k∗.

to = inf
{
τ ≥ 2 : ∆min, ∆̃k,k∗ ≥ 4

√
2K log τ

τ

}
,

U
(nc)
k,CUCB

= Kt0 +K3
T∑

t=Kt0

2
( t
K

)−2
+

T∑
t=1

3t−3,

U
(c)
k,CUCB

= 8
log(T )

∆2
k

+
(

1 +
π2

3

)
+

T∑
t=1

2Kt exp
(
− t∆2

min

2K

)
.

Where, ∆min = mink 6=k∗ µ
∗ − µk.
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Upper bound on AoI Regret Under CUCB

Theorem (Upper bound on AoI regret under CUCB)

Let µmin = mink µk, then for T > t0,

E[RCUCB(T )] ≤ 1− µ∗

µ∗µmin
+
( 1

µmin
− 1

µ∗

)( ∑
k′∈[K]\C

∆k′U
(nc)
k,CUCB

+
∑

k∈C\{k∗}

∆kU
(c)
k,CUCB

)
= O(1) + O(C log T ),

and for T ≤ t0,

E[RCUCB(T )] ≤
( 1

µmin
− 1

µ∗
)
T.
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Definitions Associated With C - Thompson Sampling

Let C denote the number of competitive sub-optimal arms and C denote the set of
competitive arms inclusive of k∗.

tb = inf
{
τ ≥ exp (11β) : ∆min, ∆̃k,k∗ ≥ 6

√
2Kβ log τ

τ

}
,

U
(nc)
k,CTS

= Ktb +

T∑
t=1

3t−3 +K2
T∑

t=Ktb

(
(2K + 3)

( t
K

)−2
+
( t
K

)1−2β)
,

U
(c)
k,CTS

= 18
log(T∆2

k)

∆2
k

+ exp (11β) +
9

∆2
k

+

T∑
t=1

2Kt exp
(
− t∆2

min

2K

)
.

Where, ∆min = mink 6=k∗ µ
∗ − µk and β > 1 is a parameter of the Thompson Sampling with

Gaussian priors algorithm.
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Upper Bound on AoI Regret Under C - Thompson Sampling

Theorem (Upper bound on AoI regret under CTS)

Then, for any choice of β > 1 and for T > tb,

E[RCTS(T )] ≤ 1− µ∗

µ∗µmin
+
( 1

µmin
− 1

µ∗

)( ∑
k′∈[K]\C

∆k′U
(nc)
k,CTS

+
∑

k∈C\{k∗}

∆kU
(c)
k,CTS

)
= O(1) + O(C log T ),

and for T ≤ tb,

E[RCTS(T )] ≤
( 1

µmin
− 1

µ∗
)
T.
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Discussion About Regret Bounds

If C > 0 for a Correlated Bandit instance, and if at least one arm is strictly competitive,
then the lower bound and upper bound on AoI regret are both O(log T )

When there are no competitive arms (C = 0), there is no meaningful lower bound on the
expected AoI regret

The C = 0 case agrees with the fact that the set C\{k∗} being empty results in an O(1)
upper bound on AoI regret

For these cases of Correlated Bandit instances AoI regret bounds are order-optimal
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Simulation Results for Example 1
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An AoI-aware policy follows the policy or is greedy
based on a Threshold [2]

CTS and its AoI-aware variant perform the best on
AoI regret

CUCB and CTS have significantly lower AoI regret
compared to UCB and TS
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Simulation Results for Example 2
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Bandit instance in Example 2 had no competitive
sub-optimal arms, i.e. C = 0

As predicted by the bounds in the preceding
Theorems both CUCB and CTS have constant
expected AoI regret

The AoI-aware variant of a policy need not
perform better than its parent policy as is the case
for CUCB, CTS and TS in this example
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Key Takeaways and Conclusion

5G frequency band means the problem of line-of-sight occlusion becomes more significant

Exploit correlation to identify certain channels as sub-optimal within a few time steps

Assumption: Deterministic reward functions

Strength: Once determined, reward functions can be applied in other communication
systems with a similar configuration but a different and unknown distribution of X

Distribution agnostic model and algorithms analysed in this work would be highly
beneficial in such scenarios
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Directions Planned to be Pursued

Dropping the assumption of channel reward distribution being stationary across time

Theoretical analysis of AoI-aware policies

Alternate correlation models to exploit 0-1 Binary rewards

AoI regret upper bound for C - Thompson Sampling with Beta priors
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End of Slides

Thank You!
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Appendix: CUCB Decision Making Algorithm [4] - I

1: Input: Pseudo-rewards s`,k(r)

2: Initialize: Set µ̂k, φ̂`,k and nk as 0 ∀ k ∈ [K].
3: while 1 ≤ t ≤ K do
4: Schedule update on Channel kt = t
5: Receive reward rt drawn from Ber(µkt)
6: µ̂kt = rt
7: nkt(t) = 1
8: t = t+ 1
9: end while

10: while t ≥ K + 1 do
11: Find St = {k : nk(t− 1) ≥ t−1

K }, the set of arms pulled a significant number of times
till t− 1. Define kemp(t) = arg maxk∈St µ̂kt

12: Initialize the empirically competitive set At as {}
13: for k ∈ [K] do
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Appendix: CUCB Decision Making Algorithm [4] - II

14: if min`∈St φ̂k,`(t) ≥ µ̂kemp(t) then
15: Add empirically competitive arms k to the set: At = At ∪ {k}
16: end if
17: end for
18: Schedule update on Channel kt such that, kt = arg maxk∈At∪{kemp(t)} µ̂kt +

√
2 log t
nk(t−1)

19: Receive reward rt drawn from Ber(µkt)
20: µ̂kt = (µ̂kt · nkt(t− 1) + rt)/(nkt(t− 1) + 1)
21: nkt(t) = nkt(t− 1) + 1
22: φ̂k,kt =

∑
τ :kτ=kt

sk,kτ (rτ )/nkt(t) ∀ k 6= kt
23: t = t+ 1
24: end while
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Appendix: C-TS Decision Making Algorithm [4] - I

1: Input: Pseudo-rewards s`,k(r)

2: Initialize: Set the number of successes, Sk(t), failures, Fk(t), µ̂k, φ̂`,k and nk as 0 ∀
k ∈ [K].

3: while t ≥ 1 do
4: Find St = {k : nk(t− 1) ≥ t−1

K }, the set of arms pulled a significant number of times
till t− 1. Define kemp(t) = arg maxk∈St µ̂kt

5: Initialize the empirically competitive set At as {}
6: for k ∈ [K] do
7: if min`∈St φ̂k,`(t) ≥ µ̂kemp(t) then
8: Add empirically competitive arms k to the set: At = At ∪ {k}
9: end if

10: end for
11: For each k in [K], draw a sample θk(t), where,

θk(t) ∼ Beta(Sk(t− 1) + 1, Fk(t− 1) + 1)
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Appendix: C-TS Decision Making Algorithm [4] - II

12: Schedule update on Channel kt such that kt = arg maxk∈At∪{kemp(t)} θk(t)
13: Receive reward rt drawn from Ber(µkt)
14: Skt(t) = Skt(t− 1) + rt
15: Fkt(t) = Fkt(t− 1) + (1− rt)
16: µ̂kt = (µ̂kt · nkt(t− 1) + rt)/(nkt(t− 1) + 1)
17: nkt(t) = nkt(t− 1) + 1
18: φ̂k,kt =

∑
τ :kτ=kt

sk,kτ (rτ )/nkt(t) ∀ k 6= kt
19: t = t+ 1
20: end while
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