A New Approach to Correlated Multi-Armed Bandits

Juneja, I*., Gaharwar, D.S., Varshney, D., & Mohatir, S.

Department Of Electrical Engineering, Indian Institute of Technology, Bombay, tPresenting Author

The Multi-Armed Bandit Problem Sampling Algorithms - Correlated Bandits U-CUCB Sampling Algorithm

.  UCB — Upper Confidence Bound, algorithm is a well-known solution to MAB arm * To achieve an order wise or constant factor improvement over UCB we must avoid
selection problem sampling certain 'non-competitive' arms
* The Algorithm chooses to sample an arm with the highest UCB index * An arm can be called 'non-competitive' if it can be determined to be sub-optimal
2logt through indirect sampling
I (t) = () + B * Under U-CUCB (U: Uniform and C: Correlated) we say arm k is non-competitive if
() there exists an arm j s.t.,
* In generaI.UCB achieves Ioga.rlthmlc.regret scalmg: R(T) = O(log T) gi(2) < gi(z) ¥ 2 € C* and Gu(X) < §;(X)
* |f correlation between arms is exploited, order wise or constant factor
. improvement can be achieved by playing a modified strategy * Hatted variables represent empirically expected rewards from the respective arms
* I ar.m MAB problem a player choo.ses one among many (k) choices  CUCB is a strategy for Correlated Bandits that was proposed in 2018 * Thus we identify an arm as non-competitive if its reward function lies entirely
* Playing an arm returns a stochastic reward to the player below some other reward function for all support points lying in C”
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* An E-Retailer wants to expand to a new country ) * For the above Bandit Instance consisting of arms g,(X) and g,(X), CUCB is unable
* Goal is to maximize sales of smartphones through advertising U'CUCB Term|n0|0gy to identify arm 2 as non-competitive but U-CUCB is successful in doing so
* Functions g, g,, ..., 8, are purchase probabilities as a function of Income level - X, * In general, Bandit Instances with arms having high rewards at support points
modeled as a discrete r.v. with unknown distribution * In our work, we propose the U-CUCB arm selection algorithm outside of the confidence set C” will perform better under U-CUCB
* Even when the distribution changes, reward functions remain unchanged * Key idea: Obtain an estimate of the distribution — "Pseudo Distribution” * Ongoing work includes finite time regret analysis of U-CUCB and finding sufficient
* True distribution need not be learnable since reward functions are non-invertible conditions for Pseudo-Distribution to be reliable for arm classification
< g1(x) < g2(x) < g3(x) * |f we observe reward r, at time t, the Pseudo-Distribution probability mass for the
:e: s :e: .- ze: ith support point is updated as follows:
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X1 Xy X3 X4 Xs X1 X2 X3 Xa Xs X1 X» X3 X4 Xs * Sort the empirical pseudo-distribution in descending order to obtain sorted
Support Points Support Points Support Points in,dicei 91, G2 --r Gn N m Please see our extended paper for a more in depth
* For Instance consider above 3-arm Bandit Instance for three smart-phone models * Pick € =1y, @y -, qj} where Jis the smallest m s Zp(x@) >1—e expla.nation of U-CUCB, CUCB and the Correlated
i=1 Bandit Framework

* Horizontal Axis shows discretized income level support points .
* Vertical Axis is the scaled product purchase probability

Here epsilon is a small number modelled as a Hyper-Parameter
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