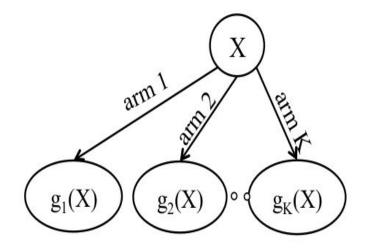
Correlated Bandits

GROUP 11 ISHANK JUNEJA 16D070012 DHRUV VARSHNEY 16D070033 DEVANSHU SINGH GAHARWAR 16D070042

Introduction : What are correlated bandits ?

- Standard MAB Setup
- Independence assumption between arms relaxed
- Correlation between arms can be exploited if present
 - Skip pulling some arms based on correlation

Problem Formulation



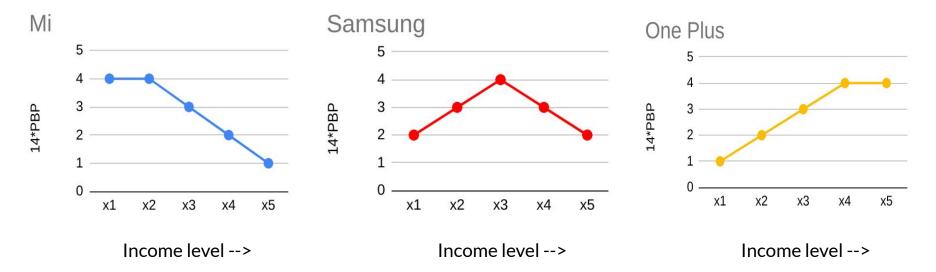
- X is the hidden random variable
- $g_1(X), g_2(X), \dots, g_k(X)$ are the dependent reward functions
- g_1, g_2, \dots, g_k are known functions.
 - Assumption Valid ???

Motivating Example

- Consider the case of Amazon expanding to a new country
- k arms \equiv k mobile companies
 - $g_1, g_2..., g_k$ = product buying probability (PBP)
- Random variable = Discrete Income levels
- $g_1, g_2...g_k \rightarrow$ found using paid surveys.

Fact : Amazon to start operating in Bangladesh in 2020. Refer this

Motivating Example (Continued)

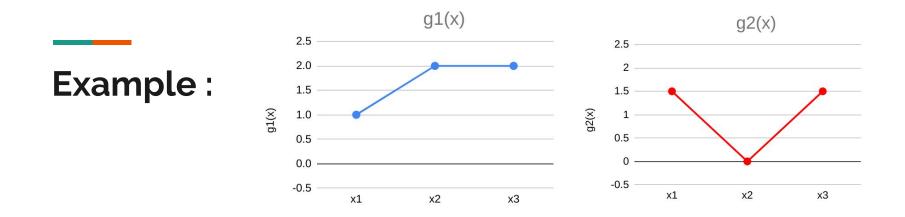


Approach 1.0

- C-UCB algorithm proposed
- Need to classify arms as Competitive and Non-Competitive
- How to decide whether an arm is competitive ?
 - Pseudo Reward of arm ℓ wrt k : $s_{\ell,k}(r) \triangleq \max_{x:g_k(x)=r} g_l(x)$
 - Expected Pseudo Gap of arm $\boldsymbol{\ell}$ wrt k : $\Delta_{\boldsymbol{\ell},k} \triangleq \mu_k E[s_{\boldsymbol{\ell},k}(\boldsymbol{g}_k(\boldsymbol{X}))]$
 - Arm ℓ is **non-competitive** wrt k if pseudo gap is positive.

Approach 1.0 (Continued)

- Compute the expected quantities empirically (Law of large numbers)
 - Empirical reward of arm k : $\mu_k = \sum_{T} \frac{1_{k(T)=k} g_{k(T)}(X(T))}{n_k(t)}$
 - Empirical Pseudo Reward : $\Phi_{l,k}(t) \triangleq \sum_{T} 1_{k(\tau)=k} s_{l,k}(r_{\tau})$
 - $\mu_k > \Phi_{l,k}(t) \Rightarrow$ Arm I is non-competitive wrt arm k



• Arm 1 pulled 10 times out of which reward 1 (3 times) and 2 (7 times)

$$\circ$$
 $\mu_1 = (1*3 + 2*7)/10 = 1.7$

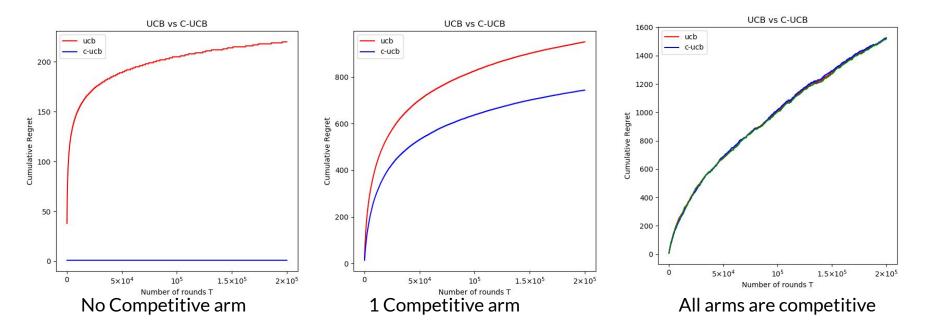
$$\circ$$
 s₂₁(1) = s₂₁(2) = 1.5 ⇒ Φ₂₁(t) = 1.5

○ Clearly $\Delta_{21} = \mu_1 - \Phi_{21}(t) > 0 \implies \text{Arm 2 is non - competitive}$

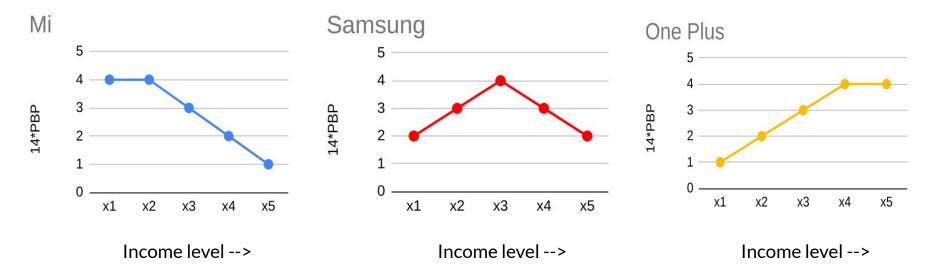
C-UCB ALGORITHM

- Initialise using standard UCB method ($n_k = 0, I_k = \infty$)
- For every iteration t do :
 - 1. Choose reference arm.
 - 2. Find the empirically competitive set wrt reference arm.
 - 3. Apply UCB over the set of competitive arms to get optimal arm k,
 - 4. For all arms $k \neq k_t$ update the empirical pseudo rewards.
 - 5. Update the standard UCB parametres (n_k, I_k)
 - 6. Update the empirical reward for arm k_{t}

Simulation Results



Reward Functions for Simulation Results



Our Contribution A New Algorithm : Uni-C-UCB

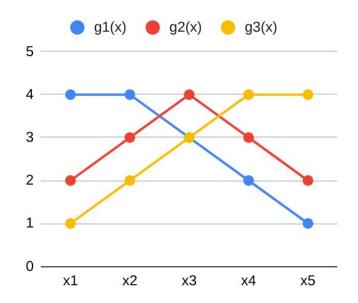
Approach 2.0

- Underlying distribution of X which can be learnt is used.
- How to decide whether an arm is competitive ?
 - **Pseudo distribution** Empirically estimate the pmf(s)
 - Confidence Set (C*) :
 - First sort the pmf in decreasing order of probability.
 - C* = {1,2 ...j} where j is the minimum k s.t. $\sum_{i=1}^{i} p(x_i) > 1 \in$
 - Arm k is **Non-Competitive** if $g_k(x) < g_i(x) \forall x \in C^*$ and some arm j.

Example :

Consider the following 3 cases :

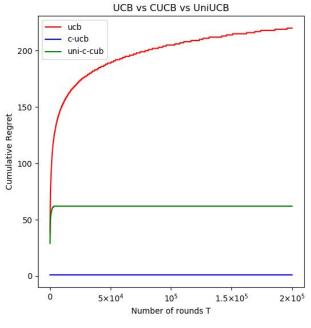
- If $\{x_1, x_2\} \in C^* \Rightarrow$ Arms 1 is competitive
- If {x₂,x₃,x₄} ∈ C* ⇒
 All arms are competitive
- If {x₁,x₂,x₃} ∈ C* ⇒
 Arms 1,2 are competitive



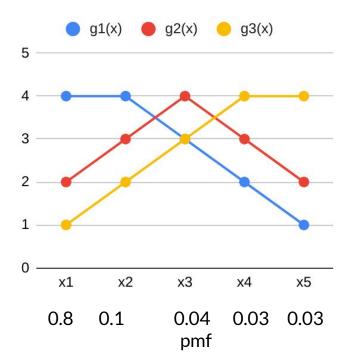
Uniform C-UCB ALGORITHM

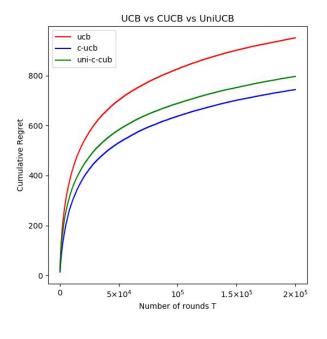
- Initialise using standard UCB method ($n_k = 0, I_k = \infty$)
- Initialise C^{*} = support of r.v. X and \in = 0.1 (tuneable)
- For every iteration t do :
 - 1. Find the competitive set using C*
 - 2. Apply UCB over the set of competitive arms to get optimal arm k,
 - 3. Update the pseudo-distribution using Bayesian updates
 - 4. Update the Confidence Set (C*)
 - 5. Update the standard UCB parametres (n_k, I_k)

Simulation Results

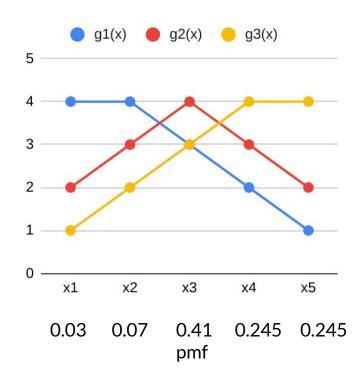


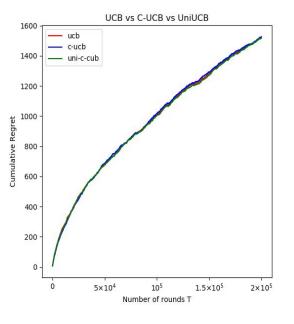
No Competitive arm



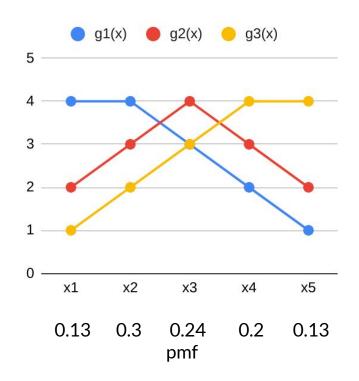


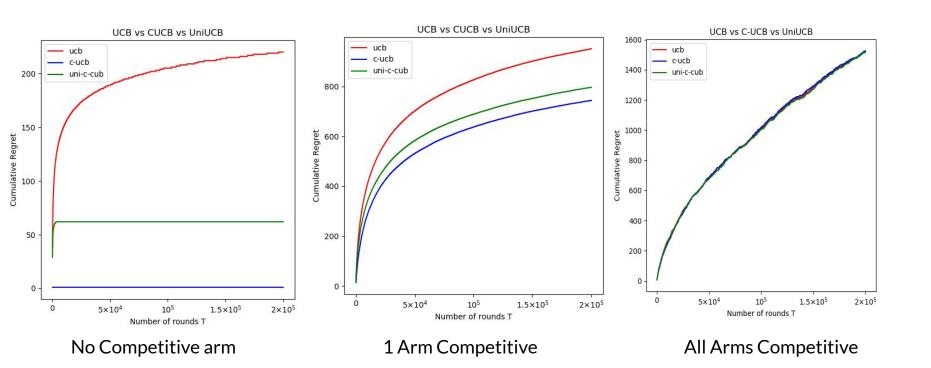
1 Competitive arm



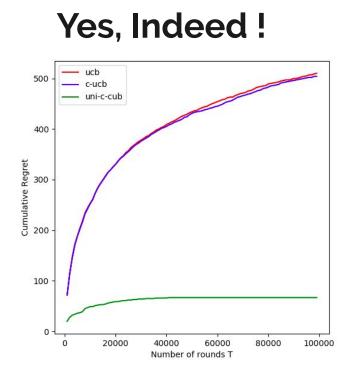


All arms are competitive

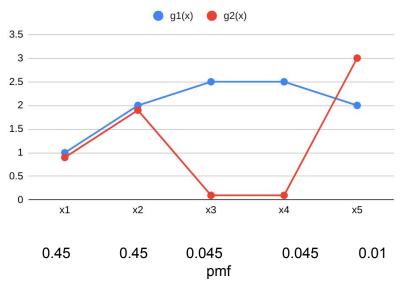




Can Uni-C-UCB outperform C-UCB?



Uniform C-UCB works better than C-UCB



Concluding Remarks

- Two approaches presented
- Both perform better than UCB by exploiting correlation
- Which approach is better ?
 - Depends on the exact nature of functions
- In the report, we would include our attempt on the regret analysis.

Thank You

Questions?

Algorithm 1 C-UCB Correlated UCB Algorithm

- 1: Input: Reward Functions $\{g_1, g_2 \dots g_K\}$
- 2: Initialize: $n_k = 0, I_k = \infty$ for all $k \in \{1, 2, \dots, K\}$
- 3: for each round t do
- 4: Find $k^{\max} = \arg \max_k n_k(t-1)$, the arm that has been pulled most times until round t-1
- 5: Initialize the empirically competitive set $\mathcal{A} = \{1, 2, \dots, K\} \setminus \{k^{\max}\}.$
- 6: for $k \neq k^{\max}$ do
- 7: if $\hat{\mu}_{k^{\max}} > \hat{\phi}_{k,k^{\max}}$ then

8: Remove arm k from the empirically competitive set: $\mathcal{A} = \mathcal{A} \setminus \{k\}$

- 9: end if
- 10: end for
- 11: Apply UCB1 over arms in $\mathcal{A} \cup \{k^{\max}\}$ by pulling arm $k_t = \arg \max_{k \in \mathcal{A} \cup \{k^{\max}\}} I_k(t-1)$
- 12: Receive reward r_t , and update $n_{k_t} = n_{k_t} + 1$
- 13: Update Empirical reward: $\hat{\mu}_{k_t}(t) = \frac{\hat{\mu}_{k_t}(t-1)(n_{k_t}(t)-1)+r_t}{n_{k_t}(t)}$
- 14: Update the UCB Index: $I_{k_t}(t) = \hat{\mu}_{k_t} + B\sqrt{\frac{2\log t}{n_{k_t}}}$
- 15: Compute pseudo-rewards for all arms $k \neq k_t$: $s_{k,k_t}(r_t) = \max_{x:g_{k_t}(x)=r_t} g_k(x)$.
- 16: Update empirical pseudo-rewards for all $k \neq k_t$: $\hat{\phi}_{k,k_t}(t) = \sum_{\tau:k_\tau = k_t} s_{k,k_\tau}(r_\tau)/n_{k_t}$ 17: end for