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Introduction : What are correlated bandits ?

e Standard MAB Setup

e Independence assumption between arms relaxed

e Correlation between arms can be exploited if present
o Skip pulling some arms based on correlation



Problem Formulation

e X s the hidden random variable
e g.(X), 9,(X), ..., g, (X) are the
dependent reward functions
e g..9,....9, are known functions.
o  Assumption Valid ?7?7?




Motivating Example

e Consider the case of Amazon expanding to a new country
e k arms = k mobile companies

o g,,9,.--9, = product buying probability (PBP)
e Random variable = Discrete Income levels
e g,.9,...g,— found using paid surveys.

Fact : Amazon to start operating in Bangladesh in 2020. Refer this


https://www.dhakatribune.com/business/2018/09/08/walmart-and-amazon-to-start-operating-in-bangladesh-in-2020

Motivating Example (Continued)
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Approach 1.0

e C-UCB algorithm proposed
e Need to classify arms as Competitive and Non-Competitive
e How to decide whether an arm is competitive ?

o Pseudo Reward of arm ¢wrtk : s, (r) max I(x)

o Expected Pseudo Gap of arm lwrtk: A, 2 p, - E[s,(9,(X))]

o Arm (is non-competitive wrt k if pseudo gap is positive.



Approach 1.0 (Continued)

e Compute the expected quantities empirically (Law of large numbers)
o Empirical reward of arm k : p, = Z 1=k Ty X(M)
n(t)
o Empirical Pseudo Reward : @ PO Z 1, )=k SI(S)
n,(t)

o M >® (t) = Arm lis non-competitive wrt arm k
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e Arm 1 pulled 10 times out of which reward 1 (3 times) and 2 (7 times)
o M= (1*3+2*7)110=1.7
o s,(1)=s,(2)=15 = &, (t)=15
o Clearly A,, = p,-®,,()>0 = Arm 2is non - competitive



C-UCB ALGORITHM

e |Initialise using standard UCB method (n, =0, | = «)

e For every iteration t do :

Choose reference arm.

Find the empirically competitive set wrt reference arm.

Apply UCB over the set of competitive arms to get optimal arm k
For all arms k # k, update the empirical pseudo rewards.

Update the standard UCB parametres (n,, Ik)

Update the empirical reward for arm k,

o0k wN



Cumulative Regret

Simulation Results
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Reward Functions for Simulation Results
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Our Contribution
A New Algorithm : Uni-C-UCB



Approach 2.0

e Underlying distribution of X which can be learnt is used.
e How to decide whether an arm is competitive ?
o Pseudo distribution - Empirically estimate the pmf(s)
o Confidence Set (C*):
m First sort the pmf in decreasing order of prolpability.
m C*={1,2..j} where  is the minimum k s.t. 2 p(x)>1- €
i=1
o Arm k is Non-Competitive if g, (x) < gj(x) V x € C* and some arm |.



Example :

Consider the following 3 cases :

o If{x,x}eC*=

Arms 1 is competitive
° If{xz,xs,x4} eEC*=

All arms are competitive
° If{xl,xz,xs} EC*=

Arms 1,2 are competitive
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Uniform C-UCB ALGORITHM

e |Initialise using standard UCB method (n, =0, |, = «)
e Initialise C* = support of r.v. X and € = 0.1 (tuneable)

e Foreveryiterationtdo:

Find the competitive set using C*

Apply UCB over the set of competitive arms to get optimal arm k,
Update the pseudo-distribution using Bayesian updates

Update the Confidence Set (C*)

Update the standard UCB parametres (n,, )

o~



Cumulative Regret

Simulation Results
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UCB vs CUCB vs UniUCB
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Cumulative Regret

UCB vs CUCB vs UniUCB
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Can Uni-C-UCB outperform C-UCB ?
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Concluding Remarks

e Two approaches presented
e Both perform better than UCB by exploiting correlation
e Which approach is better ?
o Depends on the exact nature of functions
e In the report, we would include our attempt on the regret analysis.



Thank You

Questions ?



Algorithm 1 C-UCB Correlated UCB Algorithm

1: Input: Reward Functions {g1,92...9x}

2: Initialize: ny = 0,I; = oo for all k € {1,2,... K}

3: for cach round ¢ do

4:  Find k™ = arg maxy ng(t — 1), the arm that has been pulled most times until round
t—1

5:  Initialize the empirically competitive set A = {1,2,..., K} \ {k™**}.

6: for k # k™™ do

{j- if fipmax > é)k’k:xnu then
8: Remove arm k from the empirically competitive set: A = A\ {k}
0: end if

10:  end for
t1:  Apply UCBI over arms in AU {k™**} by pulling arm k; = arg maxye g qgmaxy Ir(t — 1)

12:  Receive reward 7y, and update ng, = ng, + 1
fig, (t=1) (ny, (£)—1)+r¢
nh(t)

14:  Update the UCB Index: Iy, (t) = jig, + B4/ 2%

m_

13:  Update Empirical reward: fi, (t) =

15:  Compute pscudo-rewards for all arms k # ki: sk k, (re) = maxg.g, (z)—r, 9k ().

16:  Update empirical pscudo-rewards for all k # ky: dp g, (1) = D ik, ks Skiky (T7) /T,
17: end for



